7-1 Defining and evaluating logarithms

- I can convert between exponential and logarithmic form

Explain 1 Converting Between Exponential and Logarithmic Forms of Equations

In general, the exponential function $f(x)=b^{x}$, where $b>0$ and $b \neq 1$, has the logarithmic function $f^{-1}(x)=\log _{b} x$ as its inverse. For instance, if $f(x)=3^{x}$, then $f^{-1}(x)=\log _{3} x$, and if $f(x)=\left(\frac{1}{4}\right)^{x}$, then $f^{-1}(x)=\log _{\frac{1}{4}} x$. The inverse relationship between exponential functions and logarithmic functions also means that you can write any exponential equation as a logarithmic equation and any logarithmic equation as an exponential equation.

Logarithmic Equation

$b>0, b \neq 1$ base

Examples

Switch between Log and exponential forms

The natural logarithm:
(y) $=\ln _{2} x$ is equivalent to $x=e^{y}$
exponent Base e

The common logarithm:
exp $(y)=\log _{0} x$ is equivalent to $x=10^{y}$
Base

Exponential Equation	Logarithmic Equation
$e^{5} \approx 148.4$	$\ln 148.4 \approx 5$
$e^{1.8} \approx 6$	$\ln 6 \approx 1.8$
$10^{5}=100,000$	$\log 100,000=5$
$10^{3}=1,000$	$\log 1,000=3$

Evaluating logarithms

$$
\begin{array}{rl}
f(x)=\log x & \text { Find } f(10), f(0.1), f(100) \\
f(10)=\log _{0} 10=? & 10^{?}=10 \\
f(0.1)=\log 0 \cdot 1=? & ? \\
& 10^{?}=\frac{1}{10} \text { or } \cdot 1 \\
f(100)=\log 100=? & 10^{-1}=\frac{1}{10} ? \div-1 \\
& 10^{?}=100 \\
& ?
\end{array}
$$

Evaluate $\mathrm{f}(\mathrm{x})$

$$
\begin{aligned}
& f(x)=\log _{2} x \\
& \log _{2} 4=1 / 2 \quad 2^{\text {Find } f(4), f(16), f(64)}=4^{\prime} ?=2 \\
& \log _{2} 16=\$ 4 \quad 2^{?}=16 \quad ?=4 \\
& \log _{2} 64=?^{6} \quad 2^{?}=64
\end{aligned}
$$

Find the exact value

$$
\begin{array}{ll}
\log _{2} 32=x & \log _{4} \frac{1}{16}=x \\
2^{x}=32 & 4^{x}=\frac{1}{16} \\
x=5 & x=-2 \\
\log 10000000=x & \log .00001=x \\
10^{x}=10,000,000 & 10^{x}=.00001 \\
x=7 & x=-5 \\
& 10^{1}=10 \\
& 10^{\circ}=1 \\
& 10^{-1}=.1 \\
& 10^{-2}=.01
\end{array}
$$

Find the exact value

$$
\begin{array}{ll}
\log _{5} 25=2 & \log _{2} \frac{1}{8}=-3 \\
S^{2}=25 & 2^{-3}=\frac{1}{8} \\
\log 1000-3 & \log .001=-3 \\
10^{3}=1000 & 10^{-3}=.001
\end{array}
$$

Use a calculator to

First, find the common logarithm of 0.42 . Round the result to the thousandths place and raise 10 to that number to confirm that the power is close to 0.42 .

$\log _{0.92} \approx-.376$

$$
10 \approx 0.42
$$

Next, find the natural logarithm of 0.42 . Round the result to the thousandths place and raise e to that number to confirm that the power is close to 0.42 .
$\ln 0.42 \approx-.867$
$-.867$
0.42

Your Turn
Use a scientific calculator to find the common logarithm and the natural logarithm of the given number. Verify each result by evaluating the appropriate exponential expression.

