## 9-4 Graphing Logarithmic Functions

Objectives:

1. I can identify the transformations performed on a logarithmic function.
2. I can graph a logarithmic function by hand.
3. I can identify the asymptote of a logarithmic function.

## Logarithms \& Exponentials

$f(x)=2^{x} \& f(x)=\log _{2} x$ are inverses to find inverse:

1. switch $x \& y$


- 

Describe the transformations on each graph:

$$
\begin{aligned}
& f(x)=\log (x+2) \\
& \text { left } 2 \\
& f(x)=3 \log (-x)-4 \\
& \text { V.STRETCH } 3 \text { down } 4 \\
& f(x)=-2 \ln (2 x)+5 \\
& \text { Reflect over } X \\
& \text { V. ST } 2 \\
& \text { HST } \alpha \\
& \text { UPS }
\end{aligned}
$$

Graphing Transformed Logarithmic Functions
When graphing a transformed function, it is helpful to consider the following features of the graph: the vertical asymptote, and two reference points $(1,0)$ and $(b, 1)$.

| Function | $\boldsymbol{f}(\boldsymbol{x})=\log _{b} \boldsymbol{x}$ | $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{a} \boldsymbol{\operatorname { l o g }}_{b}(\mathbf{x}-\boldsymbol{h})+\boldsymbol{k}$ |
| :--- | :---: | :---: |
| Asymptote | $x=0$ | $x=h$ |
| Reference point | $(1,0)$ | $(1+h, k)$ |
| Reference point | $(b, 1)$ | $(b+h, a+k)$ |

List the transformations, then graph.



$$
\begin{aligned}
& \frac{1}{2} \log _{2}(x+1)+2 \\
& V . S 71 / 2 \\
& (e f t 1, \cup p 2 \\
& x=0 \rightarrow x=-1 \\
& \left(1, O_{0}\right) \cdot 1 / 2(1,0) \rightarrow(0,2) \\
& (2,1) \cdot 1 / 2(2,1 / 2) \rightarrow(1,2.5)
\end{aligned}
$$

Graph and analyze the following functions:

$$
\begin{aligned}
& f(x)=2 \cdot \log (x-1) S T 2, R 1 \\
& \text { Domain: }(1, \infty) \\
& \text { Range: }(-\infty, \infty) \\
& \text { End behavior: } \\
& \lim _{x \rightarrow \infty}=\infty(x)=\infty \lim _{x \rightarrow-\infty} f(x)= \\
& \text { Vertical Asymptote: } X=1 \\
& \text { Increasing: }(1, \infty) \\
& \text { Decreasing: one }
\end{aligned}
$$




