

Make a table of values for the following parent functions

$y=\underline{3}^{x}$

The common points for each table of (0,1) $)$ d $(\mathbf{1 , b})$. Where b is the base.

February 22, 2017

Now graph each parent function

$$
y=2^{x}
$$

Calculator Activity

Graph both functions and state the similarities and differences between their graphs

Graph $y=2^{x}$ and $y=2^{x+3}$

$$
\begin{aligned}
& \text { eft } y=0 \\
& \text { both have asymp tote }
\end{aligned}
$$

Graph $y=3^{x}$ and $y=3^{x-4}$

$$
\begin{aligned}
& \text { Right } 4 \\
& \text { asymptote } y=0
\end{aligned}
$$

Calculator Activity

Graph both functions and state the similarities and differences between their graphs

Graph $y=4^{x}$ and $y=4^{x}+2$

Vertical shifts

$$
y=b^{x}+4 P \quad \begin{aligned}
& \text { adding a number to the function } \\
& \text { means to shift the graph up }
\end{aligned}
$$

$$
y=b^{x}-\underline{\text { al }} \text { W } \quad \begin{aligned}
& \text { subtracting a number from the function } \\
& \text { means to shift the graph down }
\end{aligned}
$$

Horizontal shifts $-X^{\prime} S$ lie

$$
\left.y=b^{x+L \ell f+} \quad \begin{array}{l}
\text { adding a number to the } \\
\text { exponent means to shift the graph to the } \\
\text { left }
\end{array}\right]=b^{x-R i g h+\quad \begin{array}{l}
\text { subtracting a number from the } \\
\text { exponent means to shift the graph to the } \\
\text { right }
\end{array}}
$$

*** $\underbrace{\text { Remember to do the opposite of what the value by }}$ x says! X's ALWAYS LIE***

State the transformations for the following functions

$$
\begin{array}{ccc}
y=2^{x}+1 & y=(3)^{x-4} & y=\left(\frac{1}{4}\right)^{x}+3 \\
\text { uP 1 } & \text { Right 4 } & \text { uP 3 } \\
\text { g } & \text { d } & d
\end{array}
$$

Graphing Vertical and Horizontal Shifts:

- Determine how your graph is shifting
- Graph your asymptote (UP or down only $)$
- Move the parent function key points o (0,1) the amount and direction of the shift
Graph $y=2^{x}-2$

gRow ah

Graph $y=2^{\underline{x-2}}$

State the domain and range of each graph.

State the domain and range of each graph.

$$
y=\left(\frac{1}{2}\right)_{y}^{x-2}+4 \quad y=\left(\frac{1}{3}\right)_{y}^{x-4}-3
$$

D:
R:

D:
R:

