9-2 Trig Inverses and Reciprocals

$$
\csc \theta, \sec \theta, \cot \theta
$$

- I can identify the reciprocal of a trig ratio
- I can write all 6 trig ratios of a triangle
$9-1$
- I can use inverse trig functions to find measures of angles.
- I can solve a triangle

$$
\sin ^{-1} \cos ^{-1}, \tan ^{-1}
$$

The cosecant, secant, and cotangent ratios can be expressed in terms of sine, cosine, and tan ratios.

$$
\csc \theta=\frac{1}{\sin \theta}, \sec \theta=\frac{1}{\cos \theta}, \cot \theta=\frac{1}{\tan \theta}
$$

When you know the trigonometric ratio of an angle you can find the measure of that angle by using the inverse relation

If $\tan A=3 / 4$ then $m \angle A=\tan ^{-1} 3 / 4$
inverse $=$ UNDO

$$
A=36.87^{\circ}
$$

Once you know the sine, cosine or the tangent of an acute angle, then you can use a calculator to find the measure of the angle.

For acute angle A:
If $\sin A=x$, then $\sin ^{-1}(x)=m \measuredangle A$

If $\cos A=x$, then $\cos ^{-1}(x)=m \measuredangle A$

If $\tan A=x$, then $\tan ^{-1}(x)=m \measuredangle A$

Inverse Trig
Find the measure of the indicated angle to the nearest degree (hint: calculztor mode)

Find the $\mathrm{m} \angle \mathrm{A}$ by using inverse trigonometric functions.

$$
\begin{gathered}
4 \\
\cos ^{-1} \operatorname{cosp}^{2} A=3^{\cos ^{-1}} \\
\cos ^{-1} A=41.4^{2}
\end{gathered}
$$

$\operatorname{Tan}^{-1}(5 / 1)$
$A=35.54$

$$
\begin{aligned}
& A=41.9^{\circ} \quad \tan ^{-1} \frac{3}{\tan ^{-1} \tan A}=\frac{1}{8} \\
& A=20.55^{\circ}
\end{aligned}
$$

Solving a triangle involves finding the measures of all of the unknown sides and angles of the triangle.

Helpful hints:

- The sum of the two acute angles is 90° all $\Delta^{\prime} s$ have 180°
- If you know two sides of the right triangle, use the 2 Pythagorean Theorem to find the third side. $a^{2}+b^{2}=c^{2}$
- Use trig ratios to find the length of sides and trig inverses to find the measure of angles

$$
\begin{aligned}
& \text { trig } \rightarrow \text { sides } \\
& \text { inverse } \rightarrow \text { angles }
\end{aligned}
$$

Solve the right triangles.

$$
\begin{array}{ll}
\angle A=40^{\circ} & a=6.1 \\
\angle B=50^{\circ} & b=7.3 \\
\angle C=90^{\circ} & C=9.5
\end{array}
$$

$$
180-90 \cdot 50=6 .
$$

$$
6.1^{2}+7.3^{2}=c^{2} \quad b=7.3
$$

$$
\begin{gathered}
S=57.8^{\circ} \quad S=3.3 \\
T=90^{\circ} \quad t=3.9 \\
R=32.2^{\circ} r=2.1 \\
\sin ^{-1} \\
S=\frac{3.3}{3.9} \\
S=57.8^{\circ}
\end{gathered}
$$

$$
\begin{gathered}
r^{2}+3.3^{2}=3.9^{2} \quad R=32.2^{\circ} r=2.1 \\
-3.3^{2}-3.3^{2}
\end{gathered}
$$

$$
r^{2}=\frac{-8.5}{\sin ^{2}} \sin S=\frac{3.3}{3.9}
$$

$$
r=2.078
$$

Solve the right triangle. Round decimals to the nearest tenth.

Solve the right triangle. Round decimals to the nearest tenth.

$$
\begin{array}{ll}
\measuredangle A= & a= \\
\measuredangle B= & b= \\
\measuredangle C= & c=
\end{array}
$$

