9-1 Intro to Transformations

Objectives:

- I can use the proper vocabulary and notation when it comes to translations
- I can identify rigid motion

Vocab List
Image: after Transform marion
Pre-image: before Trans formation line segment: Line $b / x 2$ points $\overline{A B}$ angle: where 2 points meet $<A$ corresponding sides: Same side $\overline{A B} \sim \overline{C D}$ different shape corresponding angles:
same < different ship

Given that $\triangle A B C$ is the pre-image of $\triangle A^{\prime} B^{\prime} C^{\prime}$ state the following:

Corresponding sides
$\overline{A B} \sim \overline{A^{\prime} B^{\prime}}$
$\overline{A C} \sim \overline{A^{\prime} C^{\prime}}$
$\overline{C B} \sim \overline{C^{\prime} B^{\prime}}$

Corresponding Angles
$<A \sim \angle A^{\prime}$
$<B \sim B^{\prime}$
$<C \sim<C 1$

Given that $\Delta P Q R$ is the pre-image of $\Delta P^{\prime} Q^{\prime} R^{\prime}$ state the following:

Corresponding Sides
Corresponding Angles

$$
\begin{aligned}
& \overline{P Q} \sim \overline{P^{\prime} Q^{\prime}} \\
& \frac{P R}{\frac{P Q}{P^{\prime}} \sim \frac{P^{\prime}}{Q^{\prime} R^{\prime}}}
\end{aligned}
$$

$$
<P \sim<P 1
$$

$<Q \sim<Q \mid$
<Rn

$$
\operatorname{sil}
$$

State the corresponding sides and angles of pre-image ${ }_{\Delta} J K L$ and image ${ }_{\Delta} P Q M$

$\overline{K L} \sim \overline{Q M}$

$$
\begin{aligned}
& \overline{L J} \sim \overline{M P} \\
& J K \sim \overline{P Q}
\end{aligned}
$$

Corresponding Angles

$$
<K
$$

Given $\triangle A B C$ perform the following

1. Reflect over
x-axis
2. Move up 3
3. Move left 4
4. stretch out 2

Which movements kept the triangle the same shape and size? $1,2,<-R \lg$ ID MOT MON

Which movements changed the size and shape of the triangle?

Rigid Motion:

$$
\begin{aligned}
& \text { Same shape } \\
& \text { Same size }
\end{aligned}
$$

Examples: Reflections, rotations, translations

$$
\begin{gathered}
\text { up, down, left } \\
\text { Right }
\end{gathered}
$$

Identify if the change from pre-image $A B C D$ to image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is ridged or not

Why or Why not: Ye, same Shape b size

Identify if the change from pre-image $A B C D$ to image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is ridged or not

Why or Why not: No, different size

Translation means:

$$
\begin{aligned}
& \text { Station means: Left, Right, up or } \\
& \text { drew } n
\end{aligned}
$$ down

This is an example of rigid motion

Notation x moves right S

$$
\prod_{\text {TRanslate }}^{T<\leq,-2>} \underset{\text { y moves down } 2}{\stackrel{\downarrow}{T}}(x, y)
$$

Given ABCD perform the following transformation

$$
\begin{gathered}
T_{\substack{\uparrow \\
\uparrow \\
\uparrow}}(x, y) \\
\text { Right } 3 \\
\text { down } 1
\end{gathered}
$$

Given ABCD perform the following transformation

Given $\triangle A B C$ perform the following translation
$T_{<0,5>}(x, y)$
up 5

Given the pre-image $\triangle A B C$ and the image $\Delta A^{\prime} B^{\prime} C^{\prime}$ write the translation that was performed

$$
\begin{aligned}
& \text { Left } 6 \\
& \text { Up } 4
\end{aligned}
$$

Given the pre-image PQRS and the image P'Q'R'S' write the translation that was performed

Right 9
down
T

Given the pre-image $\Delta J K L$ and the image $\Delta J^{\prime} K^{\prime} L^{\prime}$ write the translation that was performed

$$
T_{\langle-5,-8\rangle}(x, y)
$$

Harry, Ron, and Hermione are visiting Hogsmeade for the day. From the castle they walk 2 blocks east and 3 blocks south to the coffee shop. Then they walk 3 blocks west and 5 blocks south to the book shop. Where is the book shop in relation to the castle?

