8-4 Solving Radical Equations

Objectives:

1. I can solve radical equations and check for extraneous solutions.

Remember that you can graph the two sides of an equation as separate functions to find solutions of the equation: a solution is any x-value where the two graphs intersect.

The graph of $y = \sqrt{x-3}$ is shown on a calculator window of $-4 \le x \le 16$ and $-2 \le y \le 8$. Reproduce the graph on your calculator. Then add the graph of y = 2.

How many solutions does the equation $\sqrt{x-y} = 2$ have? _____ How do you know?

On your calculator, replace the graph of y = 2 with the graph of y = -1.

How many solutions does the equation $\sqrt{x-3} = -1$ have? _____ How do you know?

Graph both sides of $\sqrt{4x-4} = x+1$ as separate functions on your calculator.

How many solutions does $\sqrt{4x-4} = x+1$ have?

Replace the graph of y = x + 1 with the graph of $y = \frac{1}{2}x$.

How many solutions does $\sqrt{4x-4} = \frac{1}{2}x$ have? _____

Replace the graph of $y = \frac{1}{2}x$ with the graph of y = 2x - 5.

How many solutions does $\sqrt{4x-4} = 2x - 5$ have?

Solve.

Now divide each side by 4 to isolate the radical.

Next, square each side of the equation to eliminate the radical.

Simplify.

Simplify.

Finally, check x = 9 in the original equation to verify that it is a solution and not an extraneous solution.

Example 1 Solve the equation. Check for extraneous solutions.

$$\bigcirc A \quad 2 + \sqrt{x + 10} = x$$

$$\sqrt{X+b} - \sqrt{2x-4} = 0$$

$$\sqrt{X+b} = \sqrt{2x-4}$$

$$\sqrt{X+b} = \sqrt{2x-4}$$

$$\sqrt{x+b} = 2x-4$$

$$\sqrt{x+b} = 2x-4$$

6. Polve
$$(x+5)^{\frac{1}{2}}-2=1$$
.

Solve the following, check for extraneous solutions

$$2\sqrt{x} = 3\sqrt{x-2}$$

$$\sqrt{5x-11} = x-1$$

$$\sqrt{2x+5}+4=3$$

$$-4-4$$

$$2x+5=-1$$

$$2x+6=-5$$

$$2x+6=-6$$

$$2x+6=-6$$

$$2x+6=-4$$

$$2x+6=-4$$

$$2x+6=-4$$

$$2x+6=-4$$

$$2x+6=-4$$

Example 2 Solve the equation.

$$A) \sqrt[3]{x+2} + 7 = 5$$

$$-7 - 7$$

$$2\sqrt{x+2} = -2$$

Your Turn

Solve $2(x-50)^{\frac{1}{3}} = -10$.

$$2.3 \times -50 = -10$$

$$2.3 \times -50 = -10$$

$$8 (x-50) = -104$$

$$x-50 = -125$$

$$+50 + 50$$

$$x = -75$$

$$\left(2\sqrt{x-90}\right)^{3} - 10$$

$$8(x-90) = -104$$

Solve the following:

$$\sqrt[3]{x-5} = \sqrt[3]{7-x}$$

$$\sqrt{-6} = 7-x$$

$$2 \times = 12$$

$$\sqrt{=6}$$

$$\sqrt[3]{x+2} = \sqrt[3]{x+3}$$

$$x+2 = x+3$$

$$\sqrt[3]{x+3}$$

$$\sqrt[3]{x+3}$$

$$\sqrt[3]{x+2} = \sqrt[3]{x+3}$$

$$\sqrt[3]{x+3}$$

