8-4 Solving Radical Equations

Objectives:

1. I can solve radical equations and check for extraneous solutions.

Remember that you can graph the two sides of an equation as separate functions to find solutions of the equation: a solution is any x-value where the two graphs intersect.

The graph of $y=\sqrt{x-3}$ is shown on a calculator window of $-4 \leq x \leq 16$ and $-2 \leq y \leq 8$. Reproduce the graph on your calculator. Then add the graph of $y=2$.

How many solutions does the equation $\sqrt{x-7}=2$ have? ___ How do you know?

On your calculator, replace the graph of $y=2$ with the graph of $y=-1$.
How many solutions does the equation $\sqrt{x-3}=-1$ have? \qquad How do you know?

Graph both sides of $\sqrt{4 x-4}=x+1$ as separate functions on your calculator.
How many solutions does $\sqrt{4 x-4}=x+1$ have? \qquad
Replace the graph of $y=x+1$ with the graph of $y=\frac{1}{2} x$.
How many solutions does $\sqrt{4 x-4}=\frac{1}{2} x$ have? \qquad
Replace the graph of $y=\frac{1}{2} x$ with the graph of $y=2 x-5$.
How many solutions does $\sqrt{4 x-4}=2 x-5$ have?

Solving Analytically

Solve.

Finally, check $x=9$ in the original equation to verify that it is a solution and not an extraneous solution.

Example 1 Solve the equation. Check for extraneous solutions.

$$
\begin{aligned}
& \text { (B) } \begin{aligned}
&(x+6)^{\frac{1}{2}}-(2 x-4)^{\frac{1}{2}}=0 \\
& \sqrt{x+6}-\sqrt{2 x-4}=0 \\
& x \sqrt{2 x-4}= \\
& x+6=\sqrt{2 x-4} \\
& x+6=2 x-4
\end{aligned}
\end{aligned}
$$

6. Solve $\left(x+5^{\frac{1}{2}}-2=1\right.$.

$$
\begin{gathered}
\sqrt{x+5}-2=1 \\
\sqrt{x+5}=z^{2} \\
x+2 \\
x=9 \\
-5=-5 \\
x=4
\end{gathered}
$$

Solve the following, check for extraneous solutions

 $2 \sqrt{x}=3 \sqrt{x-2}$
$\sqrt{2 x+5}+4=3$
$-4-4$
$\sqrt{2 x+5}=-1$
2

$$
\begin{array}{r}
2 x+5=-5 \\
+5
\end{array}
$$

$$
\frac{2 x}{2}=-\frac{4}{2}
$$

$$
x=-2
$$

Example 2 Solve the equation.
(A) $\sqrt[3]{x+2}+7=5$

$$
\begin{gathered}
-7-7 \\
\sqrt[3]{x+2}=-2^{3} \\
x+2=-8 \\
-2=-2 \\
x=-10
\end{gathered}
$$

Your Turn
8. Solve $2(x-50))^{\frac{1}{3}}=-10$.

$$
\begin{aligned}
& \frac{2}{2}=\frac{-10}{x-50}(2 \sqrt[3]{x-90})^{2}=-10^{3} \\
& \frac{3}{x-50}=-125 \\
& x=-75
\end{aligned}
$$

Solve the following:
$\sqrt[3]{x-5}=\sqrt[3]{7-x}$

$$
x-5=7-x
$$

$$
2 x=12
$$

$$
x=6
$$

$$
\sqrt[3]{x+2}=\sqrt[3]{x+3}
$$

$$
x+2=x+3
$$

No Solution

