$$
\begin{aligned}
& \text { 8-3 Rational Exponents } \\
& \text { I can write rational exponents as radicals and } \\
& \text { vice versa } \downarrow \\
& \text { I can simplify rational exponents } \\
& \downarrow \\
& f_{R} a c+i \text { on }
\end{aligned}
$$

Plug in the list of values for "a" and determine what the rational exponent does to "a."

$$
\begin{aligned}
& 1,4,9,16,25,36 \\
& \sqrt{a}=a^{\left(\frac{1}{2}\right)}=1^{1 / 2}=1,4^{1 / 2}=2,9^{1 / 2}=3,16^{1 / 2}=4 \\
& \begin{array}{l}
\text { square pod } \\
1,8,27,64,125,216
\end{array} \\
& \sqrt[3]{a}=\begin{array}{c}
a^{\left(\frac{1}{3}\right)}=1,2,3,4,5,6 \\
\text { cube ROOt }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1,8,27,64,125,216}{(2)} 1^{2} 2^{2} 3^{2} 4^{2} 5^{2} 6^{2} \\
& \sqrt[3]{a^{2}}=a^{\left(\frac{1}{3}\right)}=1,4,9,16,25,36 \\
& 1,16,81,256,625,1296 \\
& a^{\left(\frac{3}{4}\right)}=\sqrt[4]{a}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& a^{\frac{1}{n}}=\sqrt[n]{a}
\end{aligned}
$$

Write each of the following as a radical and simplify, if possible.

$$
\begin{aligned}
& 9^{\frac{1}{2}} \\
& (-64)^{\frac{1}{3}}=-4 \\
& \sqrt{9}=3
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{100}=10 \\
& 1010 \\
& \sqrt{z}
\end{aligned}
$$

$$
\begin{aligned}
& 25^{\frac{1}{2}}=\sqrt{25}=5 \\
& (-27)^{\frac{1}{3}}=\sqrt[3]{-2}=-3 \\
& b^{\frac{1}{2}}=\sqrt{b}
\end{aligned}
$$

Rewrite in exponent form

$$
a^{\frac{n}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
$$

a is real, m / n is a rational number in lowest terms with n bigger or
equal to 2 equal to 2
power to the sky, ROOTS IN THE gRound

Write each of the following as a radical and simplify, if possible.

$$
\begin{aligned}
& 25^{\frac{3}{2}}=\sqrt{25^{3}}=5^{3}=125 \\
& 64^{\frac{2}{3}}=\sqrt[3]{64}^{2}=4^{2}=16
\end{aligned}
$$

$$
\begin{aligned}
(-8)^{\frac{4}{3}}= & \sqrt[3]{-8}^{4} \\
& \begin{array}{|c|c|c|}
42 \\
\hat{2}^{4}
\end{array} A^{4} \cdot \widehat{4}^{4}=16 \\
& =-2^{4}=-2 \cdot-2 \cdot-2 \cdot-2
\end{aligned}
$$

Write each of the following as a radical and simplify, if possible.

Rewrite in exponent form

$$
\begin{aligned}
& \sqrt[8]{a^{3}} \\
& a^{\frac{3}{8}}
\end{aligned}
$$

$$
\begin{aligned}
& (\sqrt[4]{r})^{2} \\
& r^{\frac{2}{4}}=r^{\frac{1}{2}} \\
& (\sqrt[3]{h})^{9+4} \\
& h^{\frac{9}{3}}=h^{3}
\end{aligned}
$$

Just a reminder.
Exponent Rules

$$
\begin{array}{ll}
a^{0}=1 \quad \text { if } a \neq 0 \\
a^{-n}=\frac{1}{a^{n}} \quad \text { or } \quad \frac{1}{a^{-n}}=a^{n} \quad \text { if } a \neq 0
\end{array}
$$

$a^{m} \cdot a^{n}=a^{m+n}$
$\frac{a^{m}}{a^{n}}=a^{m-n}$
$\left(a^{m}\right)^{n}=a^{m \cdot n}$
$(a \cdot b)^{n}=a^{n} \cdot b^{n}$
$\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \quad$ if $b \neq 0$
$\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n} \quad$ if $a \neq 0, b \neq 0$

$$
\begin{aligned}
& r^{\frac{3}{4}} \cdot r^{\frac{1}{6}}=r^{\frac{11}{12}}=\sqrt[n]{r^{11}} \\
& \frac{x^{\frac{2}{3}}}{x^{\frac{1}{5}}}=X^{7 / 15}
\end{aligned}
$$

Simplify using properties of exponents. Leave answers with rational exponents

$$
\begin{aligned}
& x^{\frac{1}{2}} \cdot x^{\frac{1}{3}}=X^{5 / 6} \\
& \frac{x^{\frac{1}{3}}}{x^{\frac{5}{3}}}=X^{-4 / 3}=\frac{1}{\sqrt[3]{x^{4}}}
\end{aligned}
$$

March 13, 2017

