8-2: Properties of Logarithms

I can understand the properties of logarithms and use them to simplify logs. I can apply multiple properties to a single logarittom

Find the value of each logarithm without using a calculator.

1. $\log _{7} 7 \rightarrow 7^{x}=7 \quad x=1$
2. $\log _{18} 18 \rightarrow 18^{x}=18 \quad x=1$
3. $\log _{5} 1 \rightarrow 5^{x}=1 \quad x=0$
4. $\log _{9}-1 \quad Q^{x}=1 \quad x=0$

$$
\begin{array}{ll}
\log \text { of } 1=0 & \log =\text { base } \\
\log _{a} 1=0 & \log _{a} a=1
\end{array}
$$

Evaluate

$$
\begin{array}{lc}
\log _{5} 1=0 & \ln 1=0 \\
S^{x}=1 & e^{x}=1 \\
\log _{4} 4=1 & \log _{10} 10=1
\end{array}
$$

Evaluate the logarithm:

Without evaluating, predict what the following logs equal:
3. $\begin{aligned} & \log _{2} 2^{10}=10 \\ & 2^{x}=2^{10}\end{aligned}$
4. $\log _{20} 20^{7}=7$
$20^{x}=20$

Inverse Property of Logarithms

If b and r are positive real numbers, with $b \neq 0$, then

$$
\log _{a} a^{r}=r
$$

Evaluate

$$
\begin{aligned}
& \log _{4}\left(4^{3}=3\right. \\
& 4^{x}=4^{3} \quad e^{x}=e^{-.5}
\end{aligned}
$$

Inverse Property of Logarithms

If b and M are positive real numbers, with $b \neq 0$, then

$$
b^{\log _{b}}=a
$$

Evaluate

$$
5^{\log _{5} 20}=20 \quad 8^{\log _{8} \sqrt{23}}=\sqrt{23}
$$

$$
1 X^{\log _{12} \sqrt{2}}=\sqrt{2}
$$

$$
10^{\log 0.2}=0.2
$$

Exponent Rules Review

$$
\begin{aligned}
& 2^{5} \cdot 2^{3}=2^{8} \\
& \frac{2^{5}}{2^{3}}=2^{2} \\
& \left(2^{3}\right)^{5}=2^{15} \\
& \underline{\sqrt[3]{8}}=<^{\frac{1}{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ADDexponents } \\
& \text { SubTrAct" }
\end{aligned}
$$

Multiply"

Multiply"

$$
\sqrt[n]{a}=a^{\frac{1}{n}}
$$

Product Rule of Logarithms
If M, N and b a
$\log _{b}(M N)=\log _{b} M+\log _{b} N$

Sum of exponents $a^{b} \cdot a^{c}=a^{b+c}$ Why would we want to be able to split up a logarithm? $\log _{4}(6 x)=$

$$
\log _{4}(6)+\log _{4} x
$$

To Solve.

Write each of the following logarithms as the sum of logarithms.

$$
\begin{array}{cl}
\log _{2}(5 \cdot 3) & \ln (6 z) \\
=\log _{2}(5)+\log _{2}(3) & \ln (6)+\ln (2) \\
& \log _{4}(9 \cdot 5) \\
\log _{4}(9)+\log _{4}(5) & \log (5 w) \\
& \log _{10}(5)+\log _{10}(w)
\end{array}
$$

How do you predict we would write the following logarithm as two logarithms?

$$
\log _{b} \frac{M}{N}=\log _{b} M-\log _{b} N
$$

Quotient Rule of Logarithms

If M, N and b are positive real numbers, with $b \neq 0$, then

$$
\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N
$$

$$
\begin{array}{ll}
\log _{2}\left(\frac{5}{3}\right)=\log _{2} 5-\log _{2} 3 & \log \left(\frac{y}{5}\right) \\
& \log (y)-\log (5) \\
\log _{7}\left(\frac{9}{5}\right) \log _{7} 9-\log _{7} 5 & \ln \left(\frac{p}{3}\right) \ln (P)-\ln (3)
\end{array}
$$

Write the following as the sum or difference of logarithms.

$$
\log _{3}\left(\frac{4 x}{y}\right)=\left(\log _{3} 4+\log _{3} x\right)-\log _{3} y
$$

$$
\log _{3}\left(\frac{3 m}{n}\right)=\left(\log _{3} 3+\log _{3} m\right)-\log _{3} n
$$

$$
\log _{3}\left(\frac{q}{3 p}\right)=\log _{3} 9-\left(\log _{3} 3+\log _{3} p\right)
$$

Show that the following logs are equal: Math \uparrow 个 enter

$$
\begin{aligned}
& \log _{4}(A)=(3) \log _{2} 4 \\
& \log _{2}\left(4^{3}\right)=3 \cdot \log _{2} 4 \\
& \log _{2} 64=3 \cdot \log _{2} 4 \\
& 2 ?=64=3 \cdot 2^{2}=4 \\
& x=6=6
\end{aligned}
$$

Power Rule of Logarithms
If M and b are positive real numbers, with $b \neq 0$, then $\log _{b} M^{r}=r \log _{b} M$

Use the power Rule of Logarithms to express all powers as factors.

$$
\begin{array}{ll}
\sqrt{5} \cdot \log _{8} 3^{5}=5 \cdot \log _{8} 3 & \ln x^{\sqrt{3}}=\sqrt{3} \cdot \ln x \\
\log _{2} 5^{1.6} & \log b^{5} \\
1.6 \cdot \log _{2} 5 & 5 \cdot \log b
\end{array}
$$

Expand the logarithm.

$$
\begin{array}{lc}
\log _{2}\left(x^{2} \cdot y^{3}\right) & \log \left(\frac{100 x}{\sqrt{y}=y}\right) \frac{1}{2} \\
\log _{2} x^{2}+\log _{2} y^{3} & (\log 100+\log x)-\frac{1}{2} \log y \\
2 \log _{2} x+3 \log _{2} y & \\
\log _{4}\left(a^{2} b\right) & \log _{3}\left(\frac{9 m^{4}}{\sqrt[3]{n}}\right) \\
2 \cdot \log _{4} 9+\log _{4} b & \left(\log _{3} 9+4 \log _{3} n\right)-\frac{1}{3} \log _{3} n
\end{array}
$$

Write each of the following as a single logarithm.
$\log _{6} 3+\log _{6} 12=\log _{6}(3 \cdot 12)$
$\log (x-2)-\log x=\log \left(\frac{x-2}{x}\right)$
$\log _{5} x-3 \log _{5} 2=\log _{5}\left(\frac{x}{2^{3}}\right)$
$(\log (x-1)+\log (x+1)-3 \log x$

$$
\log \left(\frac{(x-1)(x+1)}{x^{3}}\right)
$$

Rewrite and express in terms of a and b given that $a=\ln 3$ and $b=\ln 4$
$\ln 12$
ln16

How do we evaluate logs in a calculator??

Change of Base Formula
If $a \neq 0, b \neq 0$, and M are positive real numbers, then

which means:

$$
\log _{a} M=\frac{\log M}{\log a}=\frac{\ln M}{\ln a}
$$

February 02, 2016

