## 8-1 Sequences

Objectives: I can write arithmetic and geometric sequences using explicit and recursive forms.

Write the next 3 terms for the following:
a.) $\{5,10,20,40,80,160,320\}$
b. $\{13,21,29,37,45,53,61\}$
c. $\left\{15,5, \frac{5}{3}, \frac{5}{9} \frac{1}{3} \frac{5 / 27}{}, \frac{5}{8}, \frac{5 / 243\}}{}\right.$


1. Describe the pattern that you see in the sequence of figures above. add 4 dusts

| dots | 1 | 5 | 9 | 13 | 19 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| min | 0 | 1 | 2 | 3 | 4 |.

2. Assuming the sequence continues in the same way, how many dots are there at 3 minutes? At 4 minutes?

$$
13,17
$$

3. Make a table of values and graph

| $x$ time | $x$ avo |
| :---: | :---: |
| 0 | 1 |
| 1 | 5 |
| 2 | 9 |
| 3 | 13 |


explicit
Recursive
4. Write ad equation to represent the pattern

$$
\begin{gathered}
y=4 x+1 \\
f(x)=4 x+1 \\
f(n-1), f(n), f(n+1), f(n+2)
\end{gathered}\left\{\begin{array}{l}
\frac{x}{2}+4 \\
f(n)=f(n-1)+4 \\
f(0)=1
\end{array}\right.
$$

## Arithmetic Sequence

arithmetic - sequence with common difference between successive terms (repeated addition)
explicit - each term is defined independently

$$
f(n)=a+d n \quad f a b n \geq 0
$$

recursive - use the previous term to define the following terms

$$
\begin{aligned}
& \underline{f(0)=a}, f(n)=f(n-1)+d \text { Ka d } \\
&=\text { OTH TeRM } \\
& \\
& \\
& d=\text { COMmon differerre( what you ada) } \\
& n=\text { TeRM numBeR }
\end{aligned}
$$




1. Describe the pattern that you see in the sequence of figures above. MUHiply by 2
2. Assuming the sequence continues in the same way, how many dots are there at 5 minutes? 96


Geometric Sequence
geometric - sequence with a common factor between successive terms (repeated multiplication)
explicit: $f(n)=a \cdot r^{n}$
recursive: $f(n)=f(n-1) \cdot r$

$$
f(0)=a
$$

$$
\begin{aligned}
& a=\text { OTH TERM } \\
& r=\text { Comm on ratio (factor) } \\
& n=\text { TeRM \# }
\end{aligned}
$$

Write explicit and recursive rules to represent the table
(A)

| $\boldsymbol{n}$ | 0 | 1 | 2 | 3 | 4 | $\cdots$ | $j-1$ | $j$ | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{f}(\boldsymbol{n})$ | 3 | 6 | 12 | 24 | 48 | $\cdots$ | $a r^{(j-1)}$ | $a r^{j}$ | $\cdots$ |



Write explicit and recursive rules to represent the table

(B) | $\boldsymbol{n}$ | 1 | 2 | 3 | 4 | 5 | $\cdots$ | $j-1$ | $j$ | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{f ( n ) \|}$ | $\frac{1}{25}$ | $\frac{1}{5}$ | 1 | 5 | 25 | $\cdots$ | $a r^{(j-1)}$ | $\operatorname{ar}^{j}$ | $\cdots$ |
| $\mid 25$ |  |  |  |  |  |  |  |  |  | $e: f(n)=\frac{1}{125} \cdot 5^{n}$

$$
\begin{array}{r}
R: f(n)=f(n-1) \cdot 5 \\
f(0)=\frac{1}{125}
\end{array}
$$

Your Turn
Write the explicit and recursive rules for a geometric sequence given a table of values.
4.

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(n)$ |  |  |  |  |  |  |  |  |

$R: \begin{aligned} & f(n)=f(n-1)-1 / 3 \\ & f(0)=27\end{aligned}$
5.

| (1) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{f ( n )}$ | 0.001 | 0.01 | 0.1 | 1 | 10 | 100 | 1000 | $\cdots$ |

$$
\begin{aligned}
e: f(n) & =0001 \cdot 10^{n} \\
\text { R:f(n) } & =f(n-1) \cdot 10 \\
f(c) & =0001
\end{aligned}
$$

Example 3 Write both an explicit and recursive rule for the geometric sequence that models the situation. Use the sequence to answer the question asked about the situation.
(A) The Wimbledon Ladies' Singles Championship begins with 128 players. Each match, two players play and only one moves to the next round. The players compete until there is one winner. How many rounds must the winner play?


Analyze Information
Identify the important informatign:
Identify the important informatign:

- The first round requires 64 matches, so $a=120$
- Thé next round requires half as many matches, so $r=1 / 2$.


