8-1 Introducing Functions

Objectives

I can identify whether a relation is a function.
I can identify whether a graph is a function.

Vocabulary

Function:
Function (graph): Passes vertical Line Test

Function (notation): $f(x)$

$$
f \text { of } x
$$

every input has only one output

Texting is..... MATH!

T-9 Texting represents a non function relation Each button NOT a function represents a few letters, or each input value relates to a couple output glues.

Keyboard Texting represents a function. One button represents one letter, or each input value relates to one output value.

Are the following relations functions? Why or why not?

Are the following relations functions? Why or why not?

$$
\{(2,1),(3,-2),(4, Y),(5,-2)\}
$$

input: X rocrdinate
output: y coordinate

How to identify functions graphically.

Vertical line test:
CRaw a vertical line ANYWHERE 3 ONLY HIT the graph once \longrightarrow Function
draw vertical line AWYWHERE $\}$ hit graph $2+$ times \rightarrow Nor Function

Use the vertical line test to determine whether the graph represents a function.

xes

Function notation: $f(x)$ " f of x "

$$
f(x)=y
$$

$f(x)=$ means: the value of the function f at x. $\mathrm{y}=$ means: the value of the equation at x .

$$
\begin{aligned}
& \text { Equation } \\
& y=3 x-8
\end{aligned}
$$

Plug in the point (t,-5) to
Function Notation

Write the following values in function notation

$$
f(\text { input })=\text { output }
$$

Give $\mathrm{f}(-1)=3 .(0)=5, f(1)=7, f(2)=9$, write the relationship as a table of values.

$$
\begin{array}{l|l|l|l|l}
x & -1 & 0 & 1 & 2 \\
\hline f(x) & 3 & 5 & 7 & 9
\end{array}
$$

A discrete function is used to represent values that do not build upon each other and are not connected. Each value is represented individually.

Example: How much a movie theatre makes on concessions each month

A continuous function is used to represent values that build upon each other and are connected.

Example: How much money a movie theatre makes off of ticket sales

A graph that consists of points that are not connected is a discrete function

A function that is graphed with a line, connected points, is a Continuous function

Discrete
Continuous

