7-4 Graphing Logarithmic Functions

Objectives:

- 1. I can identify the transformations performed on a logarithmic function.
 - 2. I can graph a logarithmic function by hand.
 - 3. I can identify the asymptote of a logarithmic function.

Logarithms & Exponentials

$$f(x) = 2^x$$
 & $f(x) = \log_2 x$ are inverses.

to find inverse:

$$x = 2^y$$

$$y = \log_2 x$$

2. solve for y

natural log

$$f(x) = \ln x$$

$$f(x) = e^x$$

Complete the table for the function $f(x) = \log x$ Then plot the points on the graph and connect the dots.

X	$f(x) = \log x$
0.1	
1	
10	

Complete the table for the function $f(x) = \ln x$ Then plot the points on the graph and connect the dots.

x	$f(x) = \ln x$
$\frac{1}{e} \approx 0.368$	
1	
e ≈ 2.72	
e²≈7.39	

Describe the transformations on each graph:

$$f(x) = \log(x+2) \quad \text{ex} \quad 2$$

$$f(x) = 3\log(x) - 4$$

$$STRETCH$$

$$Sown$$

$$f(x) = -2\ln(x) + 5$$

$$STRETCH$$

$$Reflect$$

$$Reflect$$

Graph
$$f(x) = \log(x+2)+4$$

Left 2

 $(1,0)$ $(10,1)$
 $(1,0)$ $(10,1)$
 $(1,0)$ $(10,1)$
 $(1,0)$ $(10,1)$

