

Solving Graphically

$$
\begin{gathered}
275 e^{0.06 x}=1000 \\
y_{1}=275 e^{.06 x} \quad y_{2}=1000 \\
x=21.5 \\
\frac{275 e^{.06 x}}{275}=\frac{1000}{275} \\
1 e^{.06 x}=3.636 \\
\frac{.06 x}{\ln }=\frac{1.290}{.06} \\
x=21.516
\end{gathered}
$$

Solve the following equation graphically

Solving Equations Algebraically
 - get logarithm/exponent by itself

ve-write in tagarithmiclexponentialform
-Use the property ofequality

- use the inverse property
use properties to condense to one logarithm

Solve the following equations

$$
\begin{aligned}
& \frac{10}{5}=\frac{5 e^{4 x}}{5} \\
& \ln 2=4 x \\
& \frac{.693}{4}=\frac{4 x}{4} \\
& .173=x
\end{aligned}
$$

$$
5^{x}-\not y=7
$$

Solve the following equations

$$
\begin{array}{cc}
2 e^{x-1}+5=80 \\
-5 & \log 66^{3 x}=12 \\
2 e^{x-1}=\frac{75}{2} & \frac{3 x}{3}=\frac{1.386}{3} \\
\frac{2}{2} & x=462 \\
e^{x-1}=37.5 & x=1 \\
x-x=3.624 \\
x=11 \\
x=4.624
\end{array}
$$

Suppose that $\$ 250$ is deposited into an account that pays $0.4 .5 \%$ compound quarterly. solve for t to find how long it will take for the accountio contain at leas $\$ 500$

$$
\begin{aligned}
& A(t)=P\left(1+\frac{r}{n}\right)^{n t} \\
& 500=250\left(1+\frac{.045}{4}\right)^{4 t} \\
& \frac{500}{250}=\frac{250}{250}(1.011)^{4 t} \\
& \log _{1.011}^{2}=1.011^{4 t} \\
& \frac{63.359}{4}=\frac{4 t}{4} \\
& 15.839=t
\end{aligned}
$$

Suppose that you deposit \$2500 into an account that earns a 4.5% interest rate. How long will it take to reach $\$ 4200$.

$$
\begin{aligned}
& 4200=2500(1+.045)^{t} \\
& \frac{4200}{2500}=\frac{2500(1.045)^{t}}{2500} t \\
& \log _{1.04 s} 1.68=1.045 \\
& \log _{1.045} \\
& 11.786=t
\end{aligned}
$$

Solve the following

$$
\begin{gathered}
\ln (x+12)=3 \ln 2^{2} \\
\ln (x+12)=\ln 2^{3} \\
e^{\ln (x+12)=}=\ln 8 \\
x+12=8 \\
x=-4
\end{gathered}
$$

Solve the following

$\log x^{4}=2$
$4 \ln (x+7)-5=1$

Solve the following

$3-\log (x+2)=5$
$\log _{4}(1-x)=1$

