7-2 Properties of Logarithms

I can use the properties of logarithms to simplify logarithms.

I can use the properties of logarithms to express logarithms in different ways.

$$
\begin{gathered}
b^{x}=a \quad \log s=\text { exponents } \\
\log _{b} a=x \\
x^{2} \cdot x^{5}=x^{7} \\
\frac{x^{6}}{x^{2}}=x^{4} \\
x^{0}=1
\end{gathered}
$$

| 7-2 Properties of Logarithms |
| :---: |
| $\log _{a} 1=0$ $\log _{a} a=1$ <br> $a^{\prime}=1$ $a^{\prime}-a$ <br> Evaluate $\log$ of $1=0$ Log of itself $=1$ <br> $\log _{5} 1=0$ $\ln 1=0$ <br> $5^{x}=1$ $e^{x}=1$ <br> $\log _{4} 4=1$ $\log _{2} 10=1$ <br> $4^{x}=4$ $10^{x}=10$ |

## Inverse Property of Logarithms

If $b$ and $M$ are positive real numbers, with $b \neq 0$, then

$$
b^{\log _{b} M}=M
$$

Evaluate


## Evaluate

$$
\begin{gathered}
12^{\log _{12} 3} \\
3
\end{gathered}
$$

$$
10^{\log 6}
$$

Inverse Property of Logarithms
If $b$ and $r$ are positive real numbers, with $b \neq 0$, then

$$
\log _{a} a^{r}=r
$$

Evaluate

$$
\log _{4} 4^{3}
$$

$$
3
$$



## Evaluate

$\log _{8} 8^{3} \quad \log 10^{-4}$

$-4$

## Product Rule of Logarithms

If $M, N$ and $b$ are positive real numbers, with $b \neq 0$, then

$$
\log _{b}(M N)=\log _{\underline{b}} M+\log _{\underline{b}} N
$$

Write each of the following logarithms as the sum of logarithms.

## $\log _{2}(5 \cdot 3)$

$\log _{2} 5+\log _{2} 3$
$\ln (6 z)$
$\ln (6)+\ln (z)$

Write as a sum of logarithms


Product Rule of Logarithms
If $M, N$ and $b$ are positive real numbers, with $b \neq 0$, then

$$
\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N
$$

quotient+ Rule
$\log _{2}\left(\frac{5}{3}\right)=\log _{2} 5-\log _{2} 3$

$$
\log \left(\frac{y}{5}\right)=\log y-\log 5
$$

Write as a difference of logarithms

$$
\log _{7}\left(\frac{9}{5}\right) \log _{7} 9-\log _{7} 5
$$

$$
\ln \left(\frac{p}{3}\right) \ln p-\ln 3
$$

$$
\left(\begin{array}{c}
\log _{3}\left(\frac{3 m}{n}\right) \\
\left(\log _{3}\left(\frac{q}{3 p}\right)\right. \\
\frac{\left.\log _{3} 3+\log _{3} m\right)-\log _{3} n}{\log _{3} 3 \cdot \frac{m}{n}} \log _{3}\left(\frac{3 m}{n}\right)
\end{array}\right.
$$

## Product Rule of Logarithms

If $M$ and $b$ are positive real numbers, with $b \neq 0$, then

$$
\log _{b} M^{r}=r \log _{b} M
$$

Use the power Rule of Logarithms to express all powers as factors.
$5 \log _{8} 3^{5}$
$5 \cdot \log _{8} 3$
$3 \ln x$

Use the power Rule of Logarithms to express all powers as factors. $\log _{2} 5^{6}$ $\log b^{5}$



Expand the following logarithms.


## Write each of the following as a single logarithm.

$\log _{6} 3+\log _{6} 12$
$\log _{6}(3 \cdot 12)$
$\log (x-2)-\log x$
$\log \left(\frac{x-2)}{x}\right)$

Write each of the following as a single logarithm.

$$
\begin{aligned}
& \log _{8} 4+\log _{8} 16 \\
& \log _{8}(4 \cdot 16)
\end{aligned}
$$

$$
\log _{3}(x+4) \div \cdot \log _{3}(x-1)
$$

$$
\log _{3} \frac{(x+4)}{x-1}
$$

Write each of the following as a single logarithm.

$$
\begin{gathered}
2 \log _{2}(x-1)+3 \log _{2} x \\
\log _{2}\left((x-1)^{2} \cdot x^{3}\right)^{x}
\end{gathered}
$$

$$
\log (x+1)-4 \log x
$$

$$
\log \frac{(x+1)}{x^{4}}
$$

Change of Base Formula
If $a \neq 0, b \neq 0$, and $M$ are positive real numbers, then

$$
\log _{a} M=\frac{\log _{b} M}{\log _{b} a}
$$

which means:

$$
\begin{aligned}
\log _{a} M & =\frac{\log M}{\log a}=\frac{\ln M}{\ln a} \\
\log \square & =
\end{aligned}
$$

$$
\begin{aligned}
& \log _{4} 45=\frac{\log 45}{\log 4}=2.74 \\
& \log _{3} 26 \frac{\log 26}{\log 3}=2.96
\end{aligned}
$$

## Summary of Properties

$$
\begin{aligned}
& \log _{a} a^{r}=r \quad b^{\log _{b} M}=M \\
& \log _{b}(M N)=\log _{b} M+\log _{b} N \\
& \log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N \\
& \log _{b} M^{r}=r \log _{b} M \\
& \log _{a} M=\frac{\log _{b} M}{\log _{b} a}
\end{aligned}
$$

