fractions
7-1 Rational Graphs
Objectives:
I can determine the domain, range, symmetry, end behavior, and intervals of increasing and decreasing of rational graphs.
I can identify the transformation of a given function and sketch a graph
I can write a rational equation given a graph.

$$
f(x)=\frac{1}{x} \quad X \neq 0
$$

STOR

Domain $(-\infty, 0) \cup(0, \infty)$ Range $(-\infty, 0) \cup(0, \infty)$ Increasing $D N E$ Decreasing $(-\infty, 0) \cup(0, \infty)$ Left End Behavior $\lim _{x \rightarrow \infty} f(r)=0$ Right End Behavior $x \rightarrow-\infty$
$\lim _{x} f(x)=\infty$ $x \rightarrow \infty$ ${ }_{y-\text { intercepts }}^{x}$-i nt Vertical Asymptotes): $X=0$ Horizontal Asymptote: $y=0$ One-to-One?
yes

Look at the following Graphs $f(x)=\frac{1}{x}$ and $f(x)=\frac{1}{x^{2}}$ and compare. What is going on?
$f(x)=\frac{1}{x}$

$$
f(x)=\frac{1}{x-3}-4 \quad f(x)=\frac{1}{x-3}+3
$$

$f(x)=-\frac{1}{x}$

$$
f(x)=-\frac{1}{x+3}+2
$$

Based on the equations and corresponding graphs, what do you conclude about the transformations?

$$
f(x)=\frac{1}{(x-3)^{2}}+2
$$

$$
f(x)=-\frac{1}{x^{2}}+3
$$

QB UP 2

$$
\begin{aligned}
& \text { Reflect, पP } \\
& \text { over } x
\end{aligned}
$$

Based on the equations and corresponding graphs, what do you conclude about the transformations?

Sketch a graph and analyze of the following.
Domain: $(-\infty, 0) \cup(0, \infty)$

$$
f(x)=-\frac{1}{x}+3
$$

Range: $(-\infty, 3) \cup(3, \infty)$ x flip

V Asymptote: $X=0$
H Asymptote: $y=3$

$$
\text { Increasing: }(-\infty, 0) \cup(0, \infty)
$$

Decreasing: DNE
$R \lim _{x \rightarrow \infty} f(x)=3 \quad \lim _{x \rightarrow-\infty} f(x)=3$
$\vee \underset{\text { Asymptote behavior: }}{ }$

$$
\lim f(x)^{+}=-\infty
$$

$$
\lim _{x \rightarrow 0^{-}} f(x)=\infty
$$

Sketch a graph and analyze of the following.
Domain: $(-\infty,-3) \cup(-3, \infty)$
Range: $(-\infty, 1) \cup(1, \infty)$
V Asymptote: $X=-3$
H Asymptote: $y=1$
Increasing: $(-\infty,-3)$
Decreasing: $(-3, \infty)$
End Behavior:
$\lim _{x} f(x)=1 \quad \lim _{x} f(x)=1$
$x \rightarrow \infty \quad x \rightarrow-\infty$
Asymptote behavior:
$\lim _{f(x)}=\infty$

$$
f(x)=\frac{1}{(x+3)^{2}}+1
$$

$x \rightarrow-3^{+}$
$\lim _{x \rightarrow-3^{-}}=\infty$

Based on the conclusions you made, work with a partner to write an equation based on the following graphs.

 (eft $f(x)=\frac{1}{x+3}-1$
down ।

Given $f(x)=\frac{4 x+7}{x+4}$, use division to re-write the function and identify the transformations. Then sketch a graph and state the domain, range, and intervals of increasing and decreasing.

$$
\begin{array}{ccc}
-4 & 4 & 7 \\
\hline & 1 & -16 \\
\hline 4 & -9 \\
4+\frac{-9}{x+4} \\
4 p 4 \\
60+4 \\
\text { fl; } \\
\text { ST q }
\end{array}
$$

Given $f(x)=\frac{3 x+7}{x+2}$, use division to re-write the function and
identify the transformations. Then sketch a graph and analyze.

$$
3+\frac{1}{x+2} \text { up } 3
$$

$$
f(x)=\frac{5-2 x}{x+4}
$$

