7-1: Graphing Exponential Functions

Objectives: I can graph an exponential equation from an equation
Vocab: $y=a \cdot b$
exponential s

$$
\mathcal{Y}_{\substack{\text { ritial value } \\ q_{\text {Rate }} \text { orange }}}
$$

initial value change
Does the following table represent exponential behavior? Why or why not?

Review: Is it exponential growth or decay?

$$
\begin{aligned}
& y=\frac{1}{2}(3)^{x} \\
& \text { growth }
\end{aligned}
$$

$$
\begin{array}{ll}
y=3\left(\frac{1}{2}\right)^{x} & y=5\left(\frac{6}{5}\right)^{x} \\
\text { decay }
\end{array}
$$

decay

$$
b<1 \text { growth }
$$

Evaluate the following functions using your calculator:

1. $y=2(3)^{x}$ for $x=2$ $y=2(3)^{2}$
$y=18 \quad(2,18)$
2. $y=\left(\frac{1}{2}\right)^{x}$ for $\mathrm{x}=3$

3. $y=3(4)^{x}$ for $x=3$
$y=3(4,4)^{3}$
$y=192(3,192)$
4. $y=2\left(\frac{1}{3}\right)^{x}$ for $\mathrm{x}=-1$

Graph $y=4(3)^{x}-2$

x	$y=$	(x, y)
-2	$4(3)^{-2}-2=-1.5$	$(-2,-1.5)$
-1	$4(3)^{-1}-2=-.6$	$(-1,-6)$
0	$4(3)^{0}-2=2$	$(0,2)$
1	$4(3)^{1}-2=10$	$(1,10)$
2	$4(3)^{2}-2=34$	$(7,39)$

Graph $y=2\left(\frac{1}{2}\right)^{x}$

x	$y=$	(x, y)
-2	$y=8$	$(-2,8)$
-1		$(-1,4)$
0	$y=2$	$(0,2)$
1	$y=1$	$(1,1)$
2	.5	$(2, .5)$

$$
\text { Graph } y=\left(\frac{1}{2}\right)^{x}-1
$$

