6-5 Graphing Exponentials

I can graph exponential functions given an equation

I can identify key features from an equation or a graph

Complete the input-output table for each of the parent exponential functions below.

x	$f(x)=2^x$
-3	2-3=12
-2 2	2=.25
-12	1=.5
02°	=
12	= 2
272	=4
3.5,	= 8

х	$f(x)=(1/2)^{x}$
−3 (1⁄	2)=8
-2/42)-2=4
-1(^/i)=2
1/h)	° =
1(1/2)	:.5
(11)	2-25
3 (1/2)=.175

Graph the functions $f(x)=2^x$ and $f(x)=(1/2)^x$

Domain: (-00,00) all exponentials!

Range: (0,00) (asymptote,00)

U-int: (0,1) (0 where #)

What is the domain of each function?

What is the range of each function?

$$(0, \infty)$$

What is the y-intercept of each function?

Graphing Task	

Graph each function and state the domain, range, y-intercept, and asymptote for each.

$$g(x) = 2^{x+2} - 6$$

$$h(x) = -3^{x+1} + 3$$

Graph each function and state the domain, range, y-intercept, and asymptote for each.

$$f(x) = \frac{1}{2}^{x-2} - 2$$

$$f(x) = \frac{1}{3}^{x+2} + 4$$

State the domain, range, y-intercept, asymptote, increasing, decreasing, and end behavior.

Domain:

Range:

Y-intercept:

Horizontal Asymptote:

End Behavior: