6-4: Compound Interest

I can identify the different parts of the compound interest formula.

I can use the compound interest formula in a contextual problem

Equation for Compound Interest

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

$A=$ final amount
$p=$ principal amount
$r=r a t e$ as a decimal

$$
t=\operatorname{tim} e
$$

n = compounding amount

Example 1: Identify the principal amount, annual interest rate, and the number of times the interest is compounded each year.

$$
\begin{array}{ll}
A=2000\left(1+\frac{.032}{12}\right)^{12 t} & A=1500\left(1+\frac{.001}{6}\right)^{6} \\
P=2000 & P=\$ 1500 \\
r=.032 \rightarrow 3.2 \% & r=.00 \mid \rightarrow .1 \% \\
n=12 & n=b
\end{array}
$$

Compounding:

___ times per YEAR

Annually $=\ldots$ times per year Semi- annually $=_$_ times per year

Monthly = 12 times per year Quarterly = 4 times per year

Weekly $=32$ times per year Daily $=365$ times per year

Example 1: Maria's parents invested $\$ 14,000$ at 6% per year compounded monthly. How much money will there be in the account after 10 years?

$$
\text { Principal amount invested }=\$ 14,000
$$

$$
\text { how often interest is compounded }=12
$$

$$
\text { interest rate }=60 \text {.interest rate as a decimal }=.06
$$

After 10 years:

$$
=14000(1.055)^{\sqrt{2} \cdot 10}
$$

Example 2: Determine the amount of an investment if $\$ 300$ is invested at an interest rate of 3.5% compounded monthly for 22 years.

Example 3: When Jing May was born, her grandparents invested $\$ 1000$ in a fixed rate savings account at a rate of 7% compounded annually. Jing May will receive the money when she turns 18 to help with her college expenses. What amount of money will Jing May receive from the investment?

