6-4 Inverse Functions

Objectives:
-I can find the inverse of a given function graphically and algebraically

Inverse of a Relation

The inverse of a relation consisting of the ordered pairs (x, y) is the set of all ordered pairs (y, x).

Notation:
$f^{-1}(x)$
Represents the inverse of the function $f(\mathcal{X})$

Horizontal-Line Test

The inverse of a function is a function if and only if every horizontal line intersects the graph of the given function (passed the vertical-line test) at no more than one point.

If a function passes both the vertical line test AND the horizontal line test, then it is ane-to-one function.

Inverses - graphically

Show $f(x)=6-2 x$ and $g(x)=\frac{6-x}{2}$ are inverses graphically.

$\mathrm{f}(\mathrm{x})$:
$(1,4)$
$(4,1)$
$\underset{(0,3)}{(3,0)}$
$\underset{(-2,4)}{(4,-2)}$

To find the inverse equation of a function 1. Change $f(x)$ to y.
2. Interchange x and y
3. Solve for y
4. Change new y to $f^{1}(x)$

Find the inverse of each function
y

$$
\begin{aligned}
& \text { (} x(x)=x^{2}+1 \\
& x=y^{2}+1 \\
& \sqrt{x-1}=\sqrt{y^{2}} \\
& \text { 每 }=\sqrt{x-1} \\
& f^{-1}(x)=\sqrt{x-1} \\
& y=2 x^{3}+3 \\
& x_{-3}^{x}=2 y^{3}+3 \\
& \frac{x-3}{2}=\frac{2 y^{3}}{2} \\
& \sqrt[3]{\frac{x-3}{2}}=\sqrt[3]{y^{3}} \\
& \sqrt[3]{\frac{x-3}{2}}=y A^{-1}(x) \quad * \quad \begin{array}{l}
2 x y+3 x=y+1 \\
-3 x-y
\end{array} \\
& 2 x y-y=-3 x+1 \\
& y \frac{(2 x-1)}{2 x-1}=\frac{-3 x+1}{2 x-1} \\
& g^{-1}(x) y=\frac{-3 x+1}{2 x-1}
\end{aligned}
$$

