6-4 Exponential Review

Objectives:

-I can apply exponential properties and use them
-I can model real-world situations using exponential functions

EXPONENTIAL FUNCTION

$$
\begin{gathered}
f(x)=a(b)^{x}-\text { Exponent } \\
\begin{array}{c}
\text { Initial Value } \\
\text { (y-intercept) } \\
0 \text { th term } \\
\\
\\
\text { Base } \\
\text { (Multiplier) } \\
\text { common } \\
f a<T O R
\end{array}
\end{gathered}
$$

Graph the following functions on a calculator and sketch.
Be sure to plot the y-intercept

What did you notice about the graphs and their equations?
opposite ways
x as exponent
CROSS © Same pint
Multiply by a fraction
above x axis = asymp Tots
$f(x)=a(b)^{x}$
Exponential Growth and Decay
When $b>1$ he function represents exponential growth When $0<b<1$, the function represents exponential decay

$$
b<1=\text { decay }
$$

Determine whether each function represents growth or decay
$\begin{array}{ll}a \cdot b^{x} & \text { b. } g(x) \neq\left(\frac{3}{2}\right)^{x} \\ \text { a. } \\ \text { decay } & \\ & \text { growth }\end{array}$

The population of Orem in 1950 was 4,000 and was increasing at a rate of 2.6% per year.
a) Predict the population of Orem in 1975 and 2000.

$$
f(t)=400(1+.026)^{t}
$$

1975

$$
\frac{1975}{f(t)=4000(1.026)^{25}}=7,599
$$

2000

$$
f(t)=4000(1.026)^{50}=14,435
$$

b) Using your graphing calculator, predict when Orem's population will hit 200,000 people.

On federal income tax returns, self employed people can depreciate the value of business equipment. Suppose a computer valued at $\$ 2765$ depreciates at a rate of 30% per year.

$$
f(t)=a(1 \pm r)^{t}
$$

a) Write an exponential equation to model this situation

$$
f(t)=2765(1-.3)^{t}
$$

b) How much will this computer be worth in 5 years?
c) Use your graphing calculator to determine in how many years will the computer be worth $\$ 350$.

Compound Interest Formula

$$
A(t)=P\left(1+\frac{r}{n}\right)^{n t}
$$

P is the principal (initial amt)
r is the annual interest rate as a decimal!
n is the number of compounding periods per year t is the time in years

$$
\begin{aligned}
12 & =\text { monthly } \\
4 & =\text { quarterly } \\
1 & =\text { annually } \\
2 & =\text { semi-annually } \\
1 / 2 & =\text { biannually } \\
52 & =\text { weekly } \\
365 & =\text { daily }
\end{aligned}
$$

Write an equation then find the final amount for each investment.

$$
A(t)=P\left(1+\frac{r}{\underline{n}}\right)^{n t}
$$

a. $\$ 1000$ at 8% compounded semiannually for 15 years

$$
A(15)=1000\left(1+\frac{.08}{2}\right)^{2 \cdot 15}=3,243
$$

Using a calculator, determine how many years it will take for equation b to have a final amount of $\$ 4000$.

$$
4000=100\left(1+\frac{.08}{2}\right)^{2 t}
$$

The value e is called the natural base

 The exponential function with base $e, f(x)=e^{x}$, is called the natural exponential function.$$
e \approx 2.71828182827
$$

what you need to know is $e \approx 2.7$

Evaluate $f(x)=e^{x}$ for
a. $x=2$
b. $x=1 / 2$
c. $x=-1$

Continuous Compounding Formula

 If P dollars are invested at an interest rate r, that is compounded continuously, then the amount, A, of the investment at time t is given byRaTe
afrimal
\downarrow

A person invests $\$ 1550$ in an account that earns 4\% annual interest compounded continuously. $\quad A(t)=P e^{r t}$
a. Write an equation to represent this situation

$$
A(t)=1550 e^{.04 t}
$$

b. Using a calculator, find when the value of the investment reaches $\$ 2000$

$$
2000=1550 e^{.04 t}
$$

An investment of \$1000 earns an annual interest rate of 7.6\%.
Compare the final amounts after 8 years for interest compounded quarterly and for interest compounded continuously.

