6-3: Real World Applications Exponential Growth/Decay

Objectives: I can determine the difference between exponential growth and decay from an equation or graph I can calculate exponential growth and decay
Vocab:
growth- $b>1$
decay- $b<1$

Exponential Growth vs. Decay

Determining whether growth or decay from an equation:

$$
\begin{aligned}
& y=a \bullet b_{n}^{x} \\
& \text { initial growth } \\
& \text { (value } \\
& \left(\begin{array}{l}
\text { Rare } \\
\text { in x }
\end{array}\right. \\
&
\end{aligned}
$$

The equation that models exponential growth/decay is:

$$
y=a(1 \pm r)^{t}
$$

a: Initial value
r: rate AS A DECIMAL
$y=$ final amount
$t=t$ lime
\pm t: growth

$$
- \text { decay }
$$

Identify the following situations as growth or decay:
a) In 2008 the town of flat creek had a population of about 280,000 and a growth rate of 0.85% per year.

growth

b) During an economic recession, a charitable organization found that its donations dropped by 1.1% per year. Before the recession, its donations were $\$ 390,000$.
decay
c) In 2000, 2200 students attended Polaris High School. The enrollment has been declining 2% annually?

Example 1: A college's tuition has risen 5\% each year since 2000. The tuition in 2000 was $\$ 10,850$.
$y=a(1 \pm r)^{t}$
a) Write an equation to represent the amount of the tuition t years after 2000.

$$
y=10,850(1+.05)^{t}
$$

b) How much will tuition cost for those attending college in 2015? What about 2018 ?

Example 2: The prize for a radio station contest begins with a $\$ 100$ gift car. Once a day, a name is announced. The person has 15 minutes to call or the prize increases by 2.5% for the next day.
a) Write an equation to represent the amount of the first card in dollars after t days with no winners.

$$
y=100(1+.025)^{t}
$$

b) How much will the gift card be worth if no one wins after 10 days?

$$
\begin{aligned}
& y=\$ 1.025)^{10} \\
& y=\$ 28
\end{aligned}
$$

Example 3: A fully inflated child's raft for a pool is losing 6.6\% of its air every day. The raft originally contained 4500 cubic inchelsoo air.
a) Write an equation to represent the loss of air.

$$
y=4500(1-.066)^{t}
$$

b) Estimate the amount of air in the raft after 7 days.

$$
2790.23 \mathrm{in}^{3}
$$

\qquad

