Unit 6: Exponential Functions 6-1: Exponent Rules

Objectives: I can simplify exponents

Vocab:

$$
\boldsymbol{b}^{x} \underset{\text { exponent }}{\text { ex ewer }}
$$

_Base
big \#, what you multiply

$$
\begin{aligned}
& \text { now many } \\
& \text { Exponent multiply it } \\
& 3
\end{aligned}
$$

$$
\text { how many times } 1
$$

Like-terms review
Group the like terms and then

- Same exponent
- Same variable

$$
\begin{aligned}
& =1 x^{3}+2 x^{3}-6 x^{3}=-3 x^{3} \\
& =-x^{2}+x^{2}+7 x^{2}=7 x^{2} \\
& =x-5 x+3 x=-1 x
\end{aligned}
$$

What's the difference between:

$$
\begin{aligned}
& x+x+x=3 x \\
& x \cdot x \cdot x=x^{3} \\
& 2 x+2 x+2 x=6 x
\end{aligned}
$$

$$
\underset{4 \cdot 2}{2 x \cdot 2 x \cdot 2 x}=\underset{ }{2 \times x_{x}^{3}}+8 x^{3}
$$

Practice Expanding and Simplifying:
$x^{4}=x \cdot x \cdot x \cdot x$

$$
x \cdot x \cdot x=x^{3}
$$

$x^{2}=X \cdot X$

$$
9
$$

$$
x \cdot x \cdot x \cdot x \cdot x=x^{s}
$$

$$
2^{4}=2 \cdot 2 \cdot 2 \cdot 2
$$

$$
5 \cdot 5 \cdot 5 \cdot 5=5^{4}
$$

$$
y^{5}=y \cdot y \cdot y \cdot y \cdot y
$$

$$
z \cdot z \cdot z \cdot z \cdot z \cdot z=z^{6}
$$

$$
(2 a)^{3}=2 a \cdot 2 a \cdot 2 a
$$

$$
(4 y)(4 y)(4 y)(=4 y)^{3}
$$

$$
(j k)^{5}=j k \cdot j k \cdot j k \cdot j k \cdot j(a b)(a b)(a b)(a b)(a b)=
$$

What's the pattern?
add exponents

Try simplifying without writing it out!

$$
x^{5} \cdot x^{12}=X^{17} \quad w^{14} \cdot w^{20}=W^{34} \quad 2^{4} \cdot 2^{5}=2^{9}
$$

Will this work for $x^{2} \cdot y^{3}$? Same base

Expression	Write it Out	Simplified
$(x y)^{2}$	$(x y) \cdot(x y)=(x x)(y y)$	$x^{2} \cdot y^{2}$
$(a b)^{4}$	$a \cdot a \cdot a \cdot a \cdot b \cdot b b \cdot b$	$a^{4} b^{4}$
$(x y z)^{3}$	$x x x y y y 2 z z$	$x^{3} y^{3} z^{3}$
$(2 x)^{4}$	$2 \cdot 2 \cdot 2 \cdot 2 \cdot x \cdot x \cdot x \cdot x$	$2^{4} \cdot x^{4}$
$(3 j)^{3}$	$3 \cdot 3 \cdot 3 \cdot j j)$	$B^{3} \cdot b x^{4}$

What's the pattern?

What's the pattern?
distribute the exponent
Try simplifying without writing it out!

$$
\begin{array}{lll}
(p q)^{12}= & \left(\overparen{c d e}^{8}=\right. & (4 x)^{3}= \\
p^{12} q^{12} & c^{8} d^{8} e^{8} & 4^{3} x^{3}=64 x^{3}
\end{array}
$$

What's the pattern?
Distribute To Denominator
Try simplifying without writing it out!

$$
\left(\frac{w}{z}\right)=\frac{w^{9}}{z^{9}}
$$

$$
\left(\frac{a}{4}\right)^{5}=\frac{9^{5}}{4^{5}} \quad\left(\frac{2}{3}\right)^{4}=\frac{2^{4}}{3^{4}}
$$

Use your calculator to simplify each of the following:

$$
\begin{aligned}
& 5^{0}=1 0.25^{0}=1 \\
& 100^{0}=1\left(\frac{1}{17}\right)^{0}=1 \\
& 123456789^{0}=\mid
\end{aligned}
$$

What's the pattern?

$$
\text { power of } 0=1
$$

Try simplifying without using a calculator:

$$
187^{0}=\left|\quad x^{0}=\left|\quad\left(\frac{x}{z}\right)^{0}=\right| \quad\left(\frac{\partial \Omega \beta}{\delta \sigma \xi}\right)^{0}=1\right.
$$

Simplify each of the following:

$x \cdot x \cdot x \cdot x \cdot x=$
$x^{4} \cdot x^{9}=$
$(a b)^{14}=$
$\left(\frac{a}{2}\right)^{4}=$
k^{12}
$\overline{k^{5}}=$
$\left(\frac{1}{4}\right)^{0}=$

