5-3: Graphing Rational Functions

Objectives:

$2 x+9$

1. I can find the x and y intercepts of a rational function
2. I can find the vertical and horizontal asymptotes of a rational function
3. I can find the holes of a rational function
4. I can analyze a graph of a rational function
5. I can graph a rational function by hand

X and Y Intercepts

$$
\begin{aligned}
& \begin{array}{l}
\text { Y intercepts, } x=0 \\
y(\tilde{x})=\frac{3 x-12(0,2)}{x^{2}-5 x-6} \begin{array}{l}
\text { where } x=0 \\
\text { change } x+00 \\
\text { and solve }
\end{array}
\end{array} \\
& y=\frac{3(0)-12}{0^{2}-9(0)-6}=\frac{-12}{-6}=2 \text {. Coordinate }(0, y) \\
& f(x)=\frac{3 x-12}{x^{2}-5 x-6} . \\
& O=\frac{3 x-12}{x^{2}-9 x-6} \\
& 0=3 x-12 \\
& 12<3 x+12(40) \text { ana solve } \\
& \frac{12<3}{3} \frac{3}{3} x=4(4,0) \text { and solve } \text { coordinate }(x, 0) \\
& \text { - denomingior } \\
& \text { doesn.t matter }
\end{aligned}
$$

Find the x and y intercepts of the following functions:

$$
\begin{aligned}
& f(x)=\frac{(x-3)(x+1)}{x+2} \quad f(x)=\frac{3 x-5}{(x-2)(x-3)} \\
& \text { x-int: a } \\
& 0=\frac{(x-3)(x+1)}{x+2} \quad x=3,-1 \\
& (3,0)(-1,0)
\end{aligned}
$$

Mint:

$$
y=\frac{(0-3)(0+1)}{0+2}=\frac{-3 \cdot 1}{2}=-\frac{3}{2}\left(0,-\frac{3}{2}\right)
$$

Review of Vertical Asymptotes

$$
\begin{array}{r}
f(x)=\frac{2}{x+3} \\
x=-3
\end{array}
$$

Set the denominator $=0$, then solve for x

- write as $X=$
- excluded values
- Makes denominat oR $=0$

Find the vertical asymptotes:

$$
\begin{array}{ll}
x=\frac{3 x-5}{(x-2)(x+2)} & \text { b. } \\
x=-2,2: & y=\frac{2 x^{3}}{x-5} \\
& \\
\text { c. } y=\frac{5 x}{x+2} & x=5 \\
x=-2
\end{array}
$$

Asymptotes: Holes

check for holes before VA!! (by reducing the fraction if possible)

$$
f(x)=\frac{(x-3)(x-2)}{(x-2)} \text { thole @ } x=2
$$

- WOULD Be asymptotes BUT
- mat ching factors on top '3 bottom
- write $x=$

ertical (VA): caused by dividing by 0 the graph approaches $-\infty$ or ∞ on each side of the asymptote
find the asymptote set den $=0$ and solve

Identify any holes, then find all vertical asymptotes

$$
f(x)=\frac{(x-3)(x+3)}{(x-2)(x-3)}
$$

$$
\xrightarrow{\substack{i \\ i \\ \vdots \\ 1 \\ 1 \\ 1 \\ 1 \\ \vdots}}
$$

Horizontal Asymptotes

Look at the graphs, see if you can find the horizontal asymptote. Are there any patterns?

$$
\begin{aligned}
& f(x)=\frac{\mid x+3}{\mid x-1} \\
& \text { equal degree } \\
& f(x)=\frac{(x+5)(x-1)}{x+1} \\
& \text { Top Hequy } \\
& f(x)=\frac{x-4}{(x+1)(x-1)} \\
& \text { Bottom } \\
& f(x)=\frac{2 x^{2}+9}{1 x^{2}-x-6} \\
& \text { equal agree }
\end{aligned}
$$

Top Heary: $y=\operatorname{sian} T \frac{x^{3}}{x}$
Butiom Heary: $y=0 \quad \frac{x}{x^{2}}$
Equal deg: $\begin{aligned} & y=\begin{array}{c}\text { DVIDE } \\ \text { COPFFICIRNTS } \\ \\ y=2\end{array}\end{aligned} \frac{2 x}{x}, \frac{3 x^{2}+5}{x^{2}-x}$

$$
y=2 \quad y=3
$$

HOR Iz ontal Asymptotes
end behavior:(horizontal (HA) or oblique (OA)):
to find the asymptote - compare the degrees of the numerator and denominator if:

Ex
top heavy (OA):
bottom heavy (HEB): y = 0
equal (HA): divide coefficients

$$
\begin{aligned}
& x \rightarrow \infty \\
& x \rightarrow-\infty \rightarrow \begin{array}{l}
\text { Horizontal } \\
\text { asymptote }
\end{array} \\
& x \rightarrow \begin{array}{c}
\text { Horizontal } \\
\text { asymptote }
\end{array}
\end{aligned}
$$

Bottom Heavy H.A.

$$
\frac{(x+5)}{(x+1)(x-3)}, y=0 \quad \begin{aligned}
& x \rightarrow \infty y \rightarrow 0 \\
& x \rightarrow-\infty y \rightarrow 0
\end{aligned}
$$

Identify the x and y intercepts, vertical and horizontal asymptotes, end behavior, and then graph.

$$
\begin{aligned}
& \begin{array}{l}
y \\
f(x)=\frac{-3}{x-1} \\
\text { xint -DNE }
\end{array} \\
& O=\frac{-3}{x-1} \\
& \begin{array}{ll}
\text { yin }-(0,3) & \text { Bot+ an Heavy } \\
y=\frac{-3}{0-1}=3 & \begin{array}{l}
E B: \\
\text { HA } \rightarrow \infty \\
x \rightarrow-\infty \\
\text { Y }=1
\end{array}
\end{array}
\end{aligned}
$$

Hales: None

$$
\begin{aligned}
& y f(x)=\frac{3 x-7}{1 x-2} \\
& \text { xint: }(2.3,0) \\
& 0=\frac{3 x-7}{2} \quad 7=3 \times x=7 / 3 \\
& y \text { int! }(0,3.5)
\end{aligned}
$$

$$
y=\frac{3(0)-7}{0-2}=-\frac{7}{2}=3.5
$$

$$
213-7
$$

$$
V A-x=2
$$

Holes:DNF $\quad \frac{E B}{x \rightarrow \infty} \infty \rightarrow 3$
HAg: equal $y=3 \quad x \rightarrow-\infty y \rightarrow 3$
ap

Identify the x and y intercepts, vertical and horizontal asymptotes, end behavior, and then graph.

$$
\begin{aligned}
& f(x)=\frac{3 x-2}{1 x-1} \\
& \operatorname{xin}_{2}^{2}(. b, 0) \\
& 0^{2}=\frac{3 x^{2}-2}{x-1} \quad \frac{2}{3}=\frac{3 x}{3} x=2 / 3 \\
& y \text { int }(0,2) \\
& y=\frac{3(0)-2}{0-1}=-\frac{2}{-1}=2 \\
& \underline{V A} x=1 \quad H A:=\operatorname{deg} y=\frac{3}{1}=3 \\
& \text { Holes: PNE } \\
& \text { dB: } x \rightarrow-\infty y \rightarrow 3 \\
& x \rightarrow-\infty y \rightarrow 3
\end{aligned}
$$

Find the intercepts, asymptotes, limits at vertical asymptotes, analyze and draw the graph of

$$
f(x)=\frac{x-1}{(x-4)(x+3)} \quad \begin{aligned}
& \text { Domain } \\
& \text { Range } \\
& \text { x-intercepts } \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { YA } \text { VA } \\
& \text { HA } \\
& \text { Asymptote Behavior }
\end{aligned}
$$

End Behavior

Graph and Analyze $f(x)=\frac{x+1}{(x+3)(x-4)}$

Domain
Range
x-intercepts
y-intercepts
VA
HA
Asymptote Behavior

End Behavior

Graph and analyze $f(x)=\frac{4 x-4}{x+2}$

> Domain
> Range
> x-intercepts
> y-intercepts
> VA
> HA

Asymptote Behavior

End Behavior

