5-3 Solving Radical Equations

Objectives:

1. Lelvalical equations and check for extraneous solutions.
2. I can manipulate literal equations.

$$
\begin{aligned}
& +\underset{\text { answer }}{\text { only }}
\end{aligned}
$$

Remember that you can graph the two sides of an equation as separate functions to find solutions of the equation: a solution is any x-value where the two graphs intersect.

The graph of $y=\sqrt{x-3}$ is shown on a calculator window of $-4 \leq x \leq 16$ and $-2 \leq y \leq 8$. Reproduce the graph on your calculator. Then add the graph of $y=2$.

On your calculator, replace the graph of $y=2$ with the graph of $y=-1$.
How many solutions does the equation $\sqrt{x-3}=-1$ have? How do you know? Never intersecps

Find the solution graphically

$$
\begin{aligned}
& \begin{array}{l}
(x+5)\left(\frac{1}{2}\right) \begin{array}{r}
x=4 \\
2=1
\end{array} \\
\sqrt{x+5}-2=1 \\
+2
\end{array} \\
& x=6 \\
& \begin{array}{l}
2^{2+\sqrt{x+10}}=x-2 \\
2^{x+10^{2}}=(x-2)^{2}
\end{array} \\
& \begin{array}{l}
(x+5)=9 \\
x+5=9
\end{array} \\
& \begin{array}{l}
x+5=-5 \\
x^{5}=4
\end{array} \\
& \begin{array}{c}
(x+6)^{\frac{1}{2}}-(2 x-4)^{\frac{1}{2}}=0 \\
x=10
\end{array} \\
& x+10=x-2[(x-2) \\
& \begin{aligned}
& x+10=x^{2}-2 x-2 x+4 \\
&-4 x-10
\end{aligned} \\
& 0=x^{2}-5 x-6 \\
& 0=(x-6)(x+1) \\
& x=6,-x \\
& x+6=2 x-y \\
& -x+4-x+4 \\
& 2+\sqrt{-1+10}=-1 \\
& 10=x \\
& 2+\sqrt{9}=-1 \\
& 2+3 \pm-1
\end{aligned}
$$

Solve the following, check for extraneous solutions

$$
\begin{aligned}
& (2 \sqrt{x})^{2}=(3 \sqrt{x-2})^{2} \\
& (2 \sqrt{x})(2 \sqrt{x})=(3 \sqrt{x-2})(3 \sqrt{x-2} \\
& 4 x=9(x-2) \\
& 4 x=9 x-18 \\
& \begin{array}{l}
-9 x \\
-5 x=-9 y \quad x=3.6
\end{array} \\
& \sqrt{2 x+5}+4=3 \\
& \begin{array}{ll}
\sqrt{2 x+5}+4 & =3 \\
\sqrt{2 x+5}=-1^{2} & x=3,4
\end{array} \\
& \begin{aligned}
2 x+5 & =1 \\
-5 & \sqrt{15-11}=2
\end{aligned} \\
& \begin{array}{ll}
2 x=-4 \\
x=-5 \\
\text { No Solution } \\
20-11 & =3
\end{array} \\
& \begin{array}{l}
\sqrt{2 x+5}=-1^{2} \\
2 x+5=1 \\
-5=-5 \\
2 x=-4 \\
x=-2 x_{+x}+\text { No Solution }
\end{array} \\
& \sqrt{5 x-11}^{2}=(x-1)^{2} \\
& \begin{array}{l}
5 x-11=x^{2}-2 x+1 \\
8 x+11=x^{2}-7 x+11
\end{array} \\
& 0=x^{2}-7 x+12 \\
& 0=(x-3)(x-4) \\
& \sqrt{2(-7)+5}+4=3 \\
& \sqrt{1}+4=3 \\
& 1+4 \neq 3
\end{aligned}
$$

Example 2 Solve the equation.

$$
\begin{array}{rc}
\sqrt[3]{x+2}+h=-7 & 2(x-50)^{\frac{1}{3}}=-10 \\
7=-7 & 2 \sqrt[3]{x-50}=\frac{-10}{2} \\
\sqrt[3]{x+2}=-2^{3} & \frac{2}{2} \\
x+2=-8 & \sqrt[3]{x-50}=-5^{3} \\
-2-2 & x-50=-125 \\
x=-10 & x+50 \\
\sqrt{-10+2}+7=5 & x=-75 \\
\sqrt{-8}+7-5 &
\end{array}
$$

Solve the following:

$$
\begin{array}{cc}
\sqrt[3]{x-5}=\sqrt[3]{7-x} & \sqrt[3]{x+2}=\sqrt[3]{x+3} \\
x-p=7-x & y+2=x+3 \\
+x+5+x & \text {-x } \\
2 x=12 & \text { No Solution } \\
x=6 & 2=3
\end{array}
$$

Driving The speed s in miles per hour that a car is traveling when it goes into a skid can be estimated by using the formula $s=\sqrt{30 f d}$, where f is the coefficient of friction and d is the length of the skid marks in feet.

After an accident, a driver claims to have been traveling the speed limit of $55 \mathrm{mi} / \mathrm{h}$. The coefficient of friction under the conditions at the time of the accident was 0.6 , and the length of the skid marks is 190 feet. Is the driver telling the truth about the car's
 speed? Explain.

Use the formula to find the length of a skid at a speed $55 \mathrm{mi} / \mathrm{h}$ Compare this distance to the actual skid length of 190 feet. $S=\sqrt{30 f d}$

$$
\begin{aligned}
& \text { f= fricTion }=0.6 \\
& d=1 \text { ing th in } f t=190 \mathrm{ft}
\end{aligned}
$$

$S=\sqrt{30 \cdot 6 \cdot 190}$
$58.48=S$
$5 S=\sqrt{30 \cdot 6 d}$
$(5 S)^{2}=\sqrt[(18 d]{18}$

$3025=18 d$
. $168.05 f^{\prime}+$

Your Turn
9. Biology The trunk length (in inches) of a male elephant can be modeled by $l=23 \sqrt[3]{t}+17$, where t is the age of the elephant in years. If a male elephant has a trunk length of 100 inches, about what is his age?

$$
\begin{aligned}
& l=23 \sqrt[3]{t}+17 \\
& 100=23 \sqrt[3]{t}+17 \\
& -17 \\
& 83=2 \beta 3 \sqrt[3]{t} \\
& \frac{23}{23} \frac{23}{3.6}=\sqrt[3]{t}
\end{aligned}
$$

