5-2 Graphing Transformation Form

 I can graph the transformation form of a rational expression.

When given a rational function in the form of $f(x)=\frac{m x+n}{p x+q}$ where $m \neq 0$ and $p \neq 0$, you can use division to re-write the function in a form to identify the transformations.

$$
g(x)=\frac{3 x-4}{x-1}
$$

Given $f(x)=\frac{4 x+7}{x+4}$, use division to re-write the function and identify the transformations. Then sketch a graph and state the domain, range, and intervals of increasing and decreasing.

$$
4+\frac{-9}{x+4}
$$

.flip $D:(-\infty,-4) \cup(-4, \infty)$
. Up 4
$R:(-\infty, 4) \cup(4, \infty)$

- Left 4

Given $f(x)=\frac{3 x+7}{x+2}$, use division to re-write the function and identify the transformations. Then sketch a graph and analyze.

Domain: $(-\infty,-2) \cup(-2, \infty)$
Range: $(-\infty, 3) \cup(3, \infty)$
V Asymptote: $x=-2$
H Asymptote: $Y=3$

$$
\begin{aligned}
& \text { End Behavior: } \\
& \begin{array}{l}
\begin{array}{l}
\text { End Behavior, } y \rightarrow 3 \\
x \rightarrow-\infty, y \\
\text { x } \\
\text { x Asymptote bonaviod }
\end{array} \rightarrow 3 \\
x \rightarrow-2 \rightarrow \infty \\
x \rightarrow-2^{-} \quad y \rightarrow-\infty
\end{array} \\
& \begin{array}{ll}
\begin{array}{ll}
\text { V. Asymptote bghaviod } \\
x \rightarrow-2 & \\
x \rightarrow-2^{-} & y
\end{array} \quad \rightarrow-\infty
\end{array}
\end{aligned}
$$

$$
\begin{array}{cc}
\frac{-2 \sqrt{3}-6}{3 【 1} & 3+\frac{1}{x+2} \\
& \text { Left 2 } \\
& u_{p} 3
\end{array}
$$

$$
f(x)=\frac{5-2 x}{x+4}
$$

Domain: $(-\infty,-4) \cup(-4, \infty)$
Range $(-\infty,-2) \cup(-2, \infty)$
V Asymptote: $x=-4$
H Asymptote: $y=-2$
End Behavior:

$$
\operatorname{cnd}_{x \rightarrow \infty} \rightarrow \infty \rightarrow
$$

$x \rightarrow-\infty, \rightarrow$

$$
\begin{aligned}
& \text { Asymptote behavior: } \\
& \underset{x \rightarrow-4^{+}}{x \rightarrow 4^{-}} \quad y \rightarrow \\
& x \rightarrow-4^{-} \quad y^{\rightarrow} \\
& \text {-4) }-2 \quad 5 \\
& -2+\frac{13}{x+4} \quad \text {.left+ } 4 \\
& -2 \quad 13 \quad \frac{13}{x+4}-2
\end{aligned}
$$

$$
f(x)=\frac{4-3 x}{x-5}
$$

Domain:
Range:
V Asymptote:
H Asymptote:
End Behavior:

Asymptote behavior:

