5-2 Graphing Transformation Form

I can graph the transformation form of a rational expression.

When given a rational function in the form of $f(x) = \frac{mx + n}{px + q}$ where $m \neq 0$ and $p \neq 0$, you can use division to re-write the function in a form to identify the transformations.

Given $f(x) = \frac{2x-1}{x+3}$ use division to re-write the function and

identify the transformations.

$$2 + \frac{7}{43}$$

Given $f(x) = \frac{4x+7}{x+4}$, use division to re-write the function and

identify the transformations. Then sketch a graph and state the domain, range, and intervals of increasing and decreasing.

Given $f(x) = \frac{3x+7}{x+2}$, use division to re-write the function and

identify the transformations. Then sketch a graph and analyze.

Domain: $(-\infty, -7) \cup (-7, \infty)$ Range: $(-\infty, 3) \cup (3, \infty)$

V Asymptote: $\chi = -2$

H Asymptote: 🖊 =

End Behavior:

Asymptote behavior

· Veft2

$$f(x) = \frac{5-2x}{x+4}$$
Domain: $(-\infty, -4)$ $v(-4, \infty)$
Range: $(-\infty, -2)$ $v(-7, \infty)$

V Asymptote: ✓ = -4

H Asymptote: y = -2

End Behavior:

$$f(x) = \frac{4 - 3x}{x - 5}$$

Domain:

Range:

V Asymptote:

H Asymptote:

End Behavior:

Asymptote behavior:

