5-1 Rational Functions
 \downarrow

Objectives: fraction

- I can determine the domain, range, end behavior, and intervals of increasing and decreasing of rational functions.
- I can identify the transformation of an given function and sketch a graph
- I can write a rational equation given a graph.

State the domain of $f(x)=\frac{1}{x}$.
The function accepts all real numbers except because division by is undefined. So, the function's domain is as follows:

- In interval notation (where the symbol \cup means union):
$(-\infty, 0) \cup(\square,+\infty)$

Determine the end behavior of $f(x)=\frac{1}{x}$.
First, complete the tables.

x Increases without Bound	
x	$f(x)=\frac{1}{x}$
100	01
1000	000
10,000	.000

x Decreases without Bound	
x	$f(x)=\frac{1}{x}$
-100	-.01
-1000	-.001
$-10,000$	$-.000 \quad 1$

Next, summarize the results.

- As $x \rightarrow+\infty, f(x) \rightarrow 0$.
- As $x \rightarrow-\infty, f(x) \rightarrow 0$.

Examine the behavior of $f(x)=\frac{1}{x}$ nea $x=0$, an determine what this means for the graph of the function.
First, complete the tables. asumptote benavioR

x Approaches 0 from the Positive Direction	
x	$f(x)=\frac{1}{x}$
0.01	100
0.001	1000
0.0001	10,000

Next, summarize the results. R.1 $h^{n t}$

- As $x \rightarrow 0^{+}, f(x) \rightarrow$

- As $x \rightarrow f^{0^{-}, f(x)} \rightarrow-\infty$.

The behavior of $f(x)=\frac{1}{x}$ near $x=0$ indicates that the graph of $f(x)$ approaches, but does not cross, the $[x$-axis $/ y$-axis], so that axis is also an asymptote for the graph.

State the range of $f(x)=\frac{1}{x}$.
 so the function's range is as follows:
The function takes on all real numbers except \qquad

- xsarnequatity yon

PIn set notation: $\left\{\begin{array}{rl} \\ \text { In }\end{array}+\square\right\}$

- In interval notation (where the symbol \cup means union) $:(-\infty, 0) \cup(0,+\infty)$

Look at the following Graphs $f(x)=\frac{1}{x}$ and $f(x)=\frac{1}{x^{2}}$ and compare. What is going on?
$f(x)=\frac{1}{x}-4 \quad f(x)=\frac{1}{x^{2}}$

Look at the following graphs and the parent function from your function booklet and answer the question below.

$$
f(x)=\frac{1}{x-2}
$$

Based on the equations and corresponding graphs, what do you conclude about the transformations?

$$
f(x)=\frac{1}{x}+2
$$

$$
f(x)=\frac{1}{x}-4
$$

Based on the equations and corresponding graphs, what do you conclude about the transformations?
OUTSIDE: Up or down

$$
f(x)=\frac{1}{x-3}-4 \quad f(x)=\frac{1}{x-3}+3
$$

down 4, Right 3 Rigtit3, Up3 Based on the equations and corresponding graphs, what do you conclude about the transformations?

$f(x)=-\frac{1}{x}$

flip

$$
f(x)=-\frac{1}{x+3}+2
$$

flip, eft 3, up 2
Based on the equations and corresponding graphs, what do you conclude about the transformations?

$$
f(x)=\frac{1}{(x-3)^{2}}+2
$$

$$
f(x)=-\frac{1}{x^{2}}+3
$$

Right 3,up2
flipmp 3
Based on the equations and corresponding graphs, what do you conclude about the transformations?

Sketch a graph and analyze of the following.
Domain: $(-\infty,-4) \cup(-4, \infty) \quad f(x)=\frac{1}{x+4}$
Range: $(-\infty, 0) \cup(0, \infty)$
V Asymptote: $X=-4$
H Asymptote: $Y=0$
Increasing: DNE
Decreasing: $(-\infty,-4) \cup(-4, \infty) \leftarrow$
End Behavior: $x \rightarrow \infty \quad y \rightarrow 0$
*v. Axmpoiose enenviver

$$
\underset{x \rightarrow-4}{ } y \rightarrow \infty
$$

$$
x-4 y \rightarrow-\infty
$$

Sketch a graph and analyze of the following.
Domain: $(-\infty,-3) \cup(-3, \infty)$
Range: $(1, \infty)$
\checkmark Asymptote: $x=-3$
H Asymptote: $Y=1$ Increasingis 53)
Decreasing:
End Behavior:

volcano

Based on the conclusions you made, work with a partner to write an equation based on the following graphs.

 cf t 3
 $+3$

UP 2
left 1
down 1

