5-1 Rational Functions

Objectives: fraction

- I can determine the domain, range, end behavior, and intervals of increasing and decreasing of rational functions.
- I can identify the transformation of a given function and sketch a graph
- I can write a rational equation given a graph.

State the domain of $f(x) = \frac{1}{x}$.

• In interval notation (where the symbol ∪ means *union*):

Determine the end behavior of $f(x) = \frac{1}{x}$.

First, complete the tables.

x Increases without Bound	
x	$f(x) = \frac{1}{x}$
100	.01
1000	.001
10,000	.0001

x Decreases without Bound	
x	$f(x) = \frac{1}{x}$
-100	01
-1000	- 001
-10,000	- 0001

Next, summarize the results.

• As
$$x \to +\infty$$
, $f(x) \to \bigcirc$.
• As $x \to -\infty$, $f(x) \to \bigcirc$.

• As
$$x \to -\infty$$
, $f(x) \to 0$.

Examine the behavior of $f(x) = \frac{1}{x}$ near x = 0, and determine what this means for the graph of the function. of the function. asymptote behavior

First, complete the tables.

x Approaches 0 from the Positive Direction	
x	$f(x) = \frac{1}{x}$
0.01	100
0.001	1000
0.0001	10,000

Negative Direction	
x	$f(x) = \frac{1}{x}$
-0.01	-100
-0.001	-1000
-0.0001	-10.000

x Approaches 0 from the

Next, summarize the results.

- As $x \to 0^+$, $f(x) \to$

The behavior of $f(x) = \frac{1}{x}$ near x = 0 indicates that the graph of f(x) approaches, but does not cross, the [x-axis/y-axis], so that axis is also an asymptote for the graph.

State the range of $f(x) = \frac{1}{x}$.

The function takes on all real numbers except ______, so the function's range is as follows:

- · As ar inequality, y
- In set notation:
- In interval notation (where the symbol \cup means union): $\left(-\infty, \bigcirc\right) \cup \left(\bigcirc\right), +\infty$

Look at the following Graphs $f(x) = \frac{1}{x}$ and

Look at the following graphs and the parent function from your function booklet and answer the question below.

$$f(x) = \frac{1}{x+3}$$

$$f(x) = \frac{1}{x - 2}$$

Based on the equations and corresponding graphs, what do you conclude about the transformations?

$$f(x) = \frac{1}{x} + 2$$

$$f(x) = \frac{1}{x} - 4$$

Based on the equations and corresponding graphs, what do you conclude about the transformations?

OUTSIDE "UP OR down

$$f(x) = \frac{1}{x-3} - 4$$

$$f(x) = \frac{1}{x-3} + 3$$

Olowh 4, Right 3 Right 73, UP 3
Based on the equations and corresponding graphs, what do

you conclude about the transformations?

$$f(x) = -\frac{1}{x}$$

$$f(x) = -\frac{1}{x+3} + 2$$

Flip flip left 3, up 2
Based on the equations and corresponding graphs, what do you conclude about the transformations?

$$f(x) = \frac{1}{(x-3)^2} + 2$$

$$f(x) = -\frac{1}{x^2} + 3$$

$$\text{Right 3, VP2}$$

$$\text{Based on the equations and corresponding graphs, what do}$$

you conclude about the transformations?

Sketch a graph and analyze of the following.

Domain: $(-\infty, -4) \cup (-4, \infty)$ $f(x) = \frac{1}{x+4}$

Range: $(-\omega_10)$ \cup $(0, \infty)$

V Asymptote: X = -4

H Asymptote: $\omega = 0$ Increasing: $\omega = 0$ Decreasing: $\omega = 0$

$$x \rightarrow 0$$

Sketch a graph and analyze of the following.

Domain: (- 00,0) U (0,00)

Range: $(-0, 3) \cup (3, \infty)$

V Asymptote: $\chi = 0$

Increasing: $(0, \infty)$

Decreasing: DNE

End Behavior:

x -> - & y -> 3

Asymptote behavior.

$$f(x) = -\frac{1}{x} + 3$$

UP3, flip S79R Sketch a graph and analyze of the following.

Domain: $(-\infty, -3) \cup (-3, \infty)$

Range: $(1, \infty)$ V Asymptote: $\chi = -3$

H Asymptote: y = 1
Increasing: -3

Decreasing:

End Behavior:

Asymptote behavior:

Volcano

Based on the conclusions you made, work with a partner to write an equation based on the following graphs.

