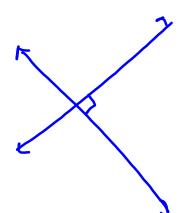
4-4 Slope and Writing Equations of Lines

Objectives

I can write an equation for a line given two points on the line.


I can identify and write the slope of a line parallel or perpendicular to a given line

Vocabulary

Parallel Slope: Same

· opposite sigh · Reciprocal (flip)

Write an equation of the line that passes through the given points.

1.
$$(23)$$
, $(5,4)$

2. $(3,-2)$, $(-1,4)$

2. $(3,-2)$, $(-1,4)$

2. $(3,-2)$, $(-1,4)$

2. $(3,-2)$, $(-1,4)$

3. $(3,-2)$

4. $(3,-2)$

4. $(3,-2)$

4. $(-1,4)$

4. $(3,-2)$

4. $(-1,4)$

4. $(3,-2)$

4. $(-1,4)$

4. $(3,-2)$

4. $(-1,4)$

4. $(3,-2)$

5. $(-1,4)$

6. $(-1,4)$

6. $(-1,4)$

7. $(-1,4)$

8. $(-1,4)$

9. $(-1,4)$

10. $(-1,4)$

11. $(-1,4)$

12. $(-1,4)$

13. $(-1,4)$

14. $(-1,4)$

15. $(-1,4)$

16. $(-1,4)$

17. $(-1,4)$

18. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

10. $(-1,4)$

10. $(-1,4)$

11. $(-1,4)$

12. $(-1,4)$

13. $(-1,4)$

14. $(-1,4)$

15. $(-1,4)$

16. $(-1,4)$

17. $(-1,4)$

18. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

19. $(-1,4)$

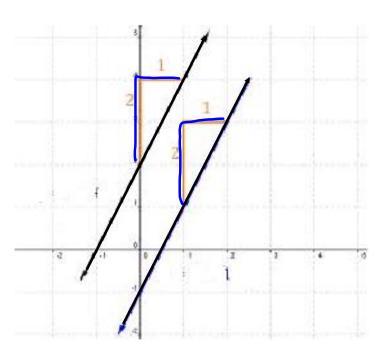
19. $(-1,4)$

19. $(-1,4)$

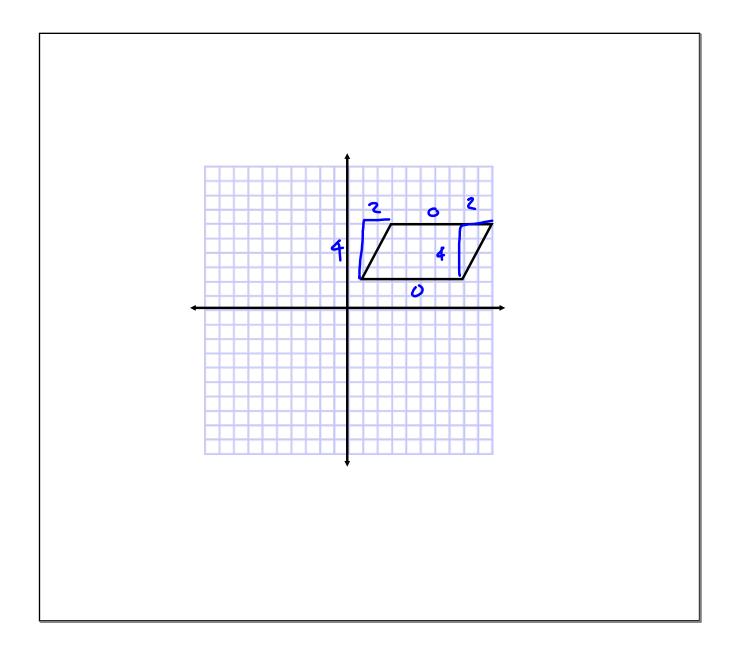
19. $(-1,4)$

19. $(-1,4)$

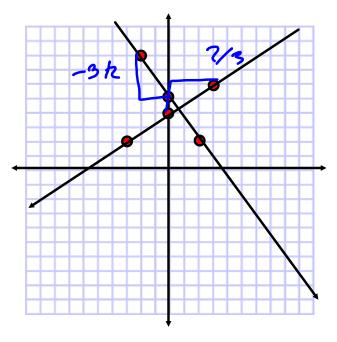
19. $(-1,4)$


19.

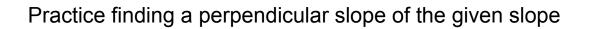
Write the equation of the line


$$4^{2}(2,5)$$
 +2 $M=2=$ $(2,-4)$ $(2,-4)$ $(2,-4)$ + $($

M=undefined b= Dhe X=2


Parallel Lines

What do you notice about the slope of parallel lines?



Perpendicular Lines

Find the slope of both lines.

What do you notice about the slope of perpendicular lines?

$$m = 1/2$$

$$m = 4/3$$

$$m = 3$$

$$m = -2/3$$

$$m = -2$$

$$m = -5/2$$

Write the slope of a line that is parallel to the given line

1.
$$y = 2x+3$$

3.
$$y = 3x-3$$

2.
$$y = 1/2x - 5$$

$$M = \frac{1}{2}$$

4.
$$y = -x - 5$$

Write the slope of a line that is perpendicular to the given line

1.
$$y = 1/2x - 2$$

$$M = -\frac{2}{7} = -2$$

3.
$$y = 1/3x - 2$$

$$M = -\frac{3}{1} = -3$$

2.
$$y = -8/5x - 4$$

4.
$$y = -1/4x + 1$$

Decide whether the lines with the given equations are *parallel*, *perpendicular*, or *neither*.

a.
$$y = \frac{1}{3}x - 1$$

 $y = -3x + 2$

$$y = \frac{5}{6}x + 8$$

$$y = -\frac{6}{5}x - 4$$

$$y = \frac{6}{5}x - 4$$

b.
$$y = -5x - 2$$

$$y = 5x + 2$$

$$y = 5x + 2$$

$$y = 5x + 2$$

d.
$$\int_{0}^{\infty} (x) = 2x - 7$$

$$\int_{0}^{\infty} (x) = 2x + 5$$

$$\int_{0}^{\infty} 2x + 5$$

Decide whether the lines with the given equations are *parallel*, *perpendicular*, or *neither*.

