Warm Up

Draw an example of the following:

4-2 Slope Between Two Points

Objective: I can find the slope between two points without a graph.

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)^{\text {Vocabulary }} \\
& \text { Slope Formula: } M=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

Parallel Lines Slope: Same slope

Perpendicular Lines Slope:

- Reciprocal (flip)

Finding the slope of a table of values is not much different that finding slope on a graph.

Find the slope of the following tables:

Example: Find the slope of the line that passes through the points $(1,4)$ and $(3,8)$

Slope: $4 / 2=2$

$$
\frac{-4}{-2}=2
$$

Find the slope of the line through the following ordered pairs:

Extra practice if needed

$$
\begin{aligned}
& (3,7) \text { and }(5,10)(3,7) 73 \frac{3}{2} \\
& (-1,4) \text { and }(3,3)+1,4)-1 \\
& +1<3,-1 / 4) \\
& (0,0) \text { and }(-2,5)(0,0)+5)\left(-\frac{5}{2}\right) \\
& -2(-2,5)+(-1,-5) \text { and }(-4,-5)(-4,-5)>0 \\
& 3\left\langle\begin{array}{l}
(-1,-5) \\
(-5)
\end{array}\right. \\
& \text { Slope }=\frac{0}{3}=(\overline{0})
\end{aligned}
$$

Parallel Lines

What do you notice about the slope of parallel lines? same slope

Practice finding a perpendicular slope of the given slope
$m=1 / 2 \quad-\frac{2}{1}$
$m=4 / 3 \quad \frac{-3}{4} \quad \mathrm{kd}$
$m=3 \quad-\frac{1}{3}$
$m=-2 / 3 \quad 3 / 2$
$m=\frac{-2}{l} \quad 1 / 2$
$m=-5 / 2$

$$
\frac{2}{5}
$$

