4.2 Complex Zeros

- I can find all zeros of a polynomial including non-real (complex zeros) (factors)
- I can write a polynomial fromits zeros

K 11 written as factors

- I can do a linear factorization
$a+b i$

$$
4+0 i=4
$$

Fundamental The of Alg: an nth degree polynomial will have n $\underbrace{\text { complex }}_{\text {ToTaL }} x^{2} \rightarrow 2$ eros $x^{3} \rightarrow 5 z e r 05$ (May be a combination of real and non-real complex.
Some zeros may be repeated)

$$
\begin{aligned}
& \text { eros may be repeated } \\
& x^{3} \rightarrow(x+1)^{2}(x-2) \text { imaginary }
\end{aligned}
$$

Complex Conjugates: complex imaginary factors come in conjugate pairs (ongvagate $\rightarrow a-b$ i
(if 3 i is a zero, -3 i is also)

Odd functions will always have at least one real zero - why??

Find all zeros of $p(x)=x^{4}-256$. Include multiplicities greater than 1
Find use factoring patterns to factor the polynomial.

$$
\begin{aligned}
& x^{4}-256 \quad a=x b=4 \\
& a=x^{2} \quad\left(x^{2}+16\right)\left(x^{2}-16\right) \\
& b=16 \quad\left(x^{2}+16\right)(x+4)(x-4) \\
& x^{2}+16 \quad x=\frac{0 \pm \sqrt{0-4(1)(16)}}{2} \\
& \begin{array}{l}
a=0 \\
c=16
\end{array} \quad x=\frac{ \pm \sqrt{-64}^{2}}{2}=\frac{ \pm 8 i}{2}= \pm 4 i \\
& (x+4 i)(x-4 i)(x+4)(x-4)
\end{aligned}
$$

zeros: $-4,4,4 i,-4 i$

+ot 91

How many complex zeros does each function have? How many are real? How many are non-real?
$x^{(2)}+5 x-7$
$x^{(3)}+8$
$x^{2}+4$

C
:

$c: 3$
$R: 1 \quad N R: 2$

Linear Factorization Thm: a polynomial of nth degree has n linear factors
(some factors may be complex imaginary)
(4) $-6 x^{3}+10 x^{2}-6 x+9$
$(x-3)(x+3)(x-i)(x+i)$
zeROS: $x=-3,3,-1,1$

Find all zeros and write a linear factorization of the following polynomial:

$$
\begin{aligned}
& x^{(4)}+x^{3}+5 x^{2}-x-6 \quad x=-1,1 \\
& \text { C: } 4 \\
& \begin{array}{l|ccccc}
1 & 1 & 5 & -1 & -6 \\
1 & -1 & 0 & -5 & 6 \\
\hline 1 & 0 & 5 & -6 & \\
\hline 1 & 1 & 1 & 6 \\
\hline k^{2}+1 \times+6 & 0
\end{array} \\
& x=\frac{-1 \pm \sqrt{1-4(1) / 6})}{2}=\frac{-1 \pm \sqrt{-23}}{2}: \frac{-1 \pm \sqrt{23} i}{2} \\
& x=-1,1, \frac{-1+\sqrt{8} i}{2}, \frac{-1-\sqrt{23} i}{2} \\
& (x+1)(x-1)\left(x+\frac{1+\sqrt{23} i}{2}\right)\left(x+\frac{1-\sqrt{23} i}{2}\right)
\end{aligned}
$$

Use the given zero to find the remaining zeros and write a linear factorization:
$2 i ; x^{4}+10 x^{3}+38 x^{2}+40 x+136$
c: 4

$$
x=2 i,-2 i
$$

ROO NRA

$$
\begin{aligned}
& x=\frac{-10 \pm \sqrt{10-4(1)(34)}}{2}=\frac{-10 \pm \sqrt{-36}}{2} \\
& x=2 i,-2 i,-5+3 i,-5-3 i=\frac{-10 \pm 6 i}{2} \\
& (x+2 i)(x-2 i)(x+5+3 i)(x+5-3 i)=-5 \pm 3 i
\end{aligned}
$$

Write a polynomial function of minimum degree with the following zeros and multiplicities:

$$
\begin{aligned}
& 4,7,2 i,-2 i \\
& (x-4)(x-7)(x+2 i)(x-2 i) \\
& -4,2+3 i, 2-3 i \\
& \quad(x+4)(x-2+3 i)(x-2-3 i) \\
& 3 \text { with multi of } 2 \\
& 5+i \text { with multi of } 1 \\
& (x-3)^{2}(x-5+i)(x-5-i)
\end{aligned}
$$

