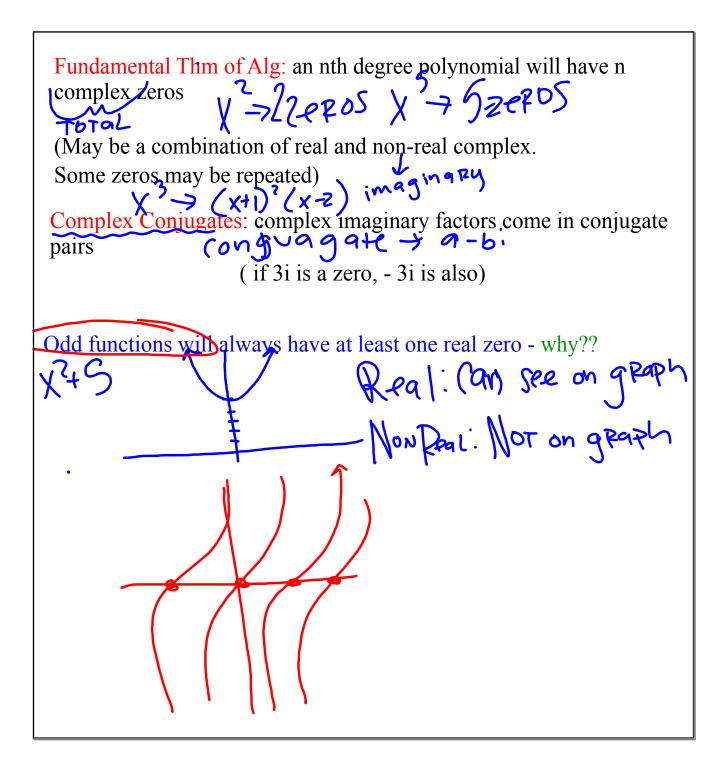
4.2 Complex Zeros


 I can find all zeros of a polynomial including non-real complex zeros

• I can write a polynomial from its zeros

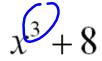
y 1 4 weitten 9s 49 (1085)

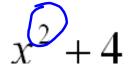
I can do a linear factorization

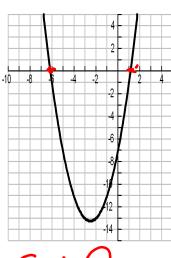
$$01 + 61$$

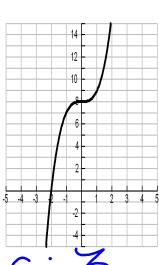
 $4 + 01 = 4$

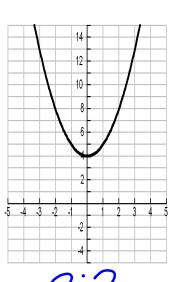
Find all zeros of $p(x)=x^3-125$. Include any multiplicities greater than 1.


First factor the difference of two cubes


Find all zeros of $p(x) = x^4 - 256$. Include multiplicities greater than 1.


Find use factoring patterns to factor the polynomial.


How many complex zeros does each function have? How many are real? How many are non-real?


$$x^{2} + 5x - 7$$
 $x^{3} + 8$

NR:2

Linear Factorization Thm: a polynomial of nth degree has n linear factors

(some factors may be complex imaginary)

$$(x-3)(x+3)(x-i)(x+i)$$

$$(x-3)(x+3)(x-i)(x+i)$$

$$(x-3)(x+3)(x-i)(x+i)$$

Find all zeros and write a linear factorization of the following polynomial:

$$x^3 + 5x^2 + x + 5$$
 $x^3 + 5x^2 + x + 5$
 $x^3 + 5x^2 + x + 5$
 $x = -5$
 $x^3 + 5x^2 + x + 5$
 $x = -5$
 $x^3 + 5x^2 + x + 5$
 $x = -5$
 $x^3 + 5x^2 + x + 5$
 $x = -5$
 $x^3 + 5x^2 + x + 5$
 $x = -5$
 $x^3 + 5x^2 + x + 5$
 $x = -5$
 $x^3 + 5x^2 + x + 5$
 $x = -5$
 $x = -5$

Find all zeros and write a linear factorization of the following polynomial:

Use the given zero to find the remaining zeros and write a linear factorization:

2i;
$$x^4 + 10x^3 + 38x^2 + 40x + 136$$

C: 4
 $x = 2i, -2i$

P: 0

NNE: 4

2i | 0

2i |

Write a polynomial function of minimum degree with the following zeros and multiplicities:

4, 7,
$$2i \, 3^{-7i}$$
 $(x-4)(x-7)(x+7i)(x-7i)$

$$-4,2+3i,2-3i$$

 $(x+4)(x-2+3i)(x-2-3i)$

3 with multi of 2

5 + i with multi of 1

$$(x-3)^2 (x-51)(x-51)$$