4-1 Review of Complex Numbers

Objective: Students will be able to:
Know the parts of a complex number
Know how to add, subtract, and multiply 2 complex numbers
Know what a conjugate is and how to find one

$i=\sqrt{-1} \quad i^{2}=-1$

Definition

Complex numbers are numbers of the form $a+b i$, where a and b are real numbers. The real number a is called the real part and the number b is called the imaginary part. .

Identify the real and imaginary parts of each complex number.

Write each of the following as a pure imaginary number.

Write each in Standard Form. State the real and imaginary parts.

$$
\begin{aligned}
& 2-\sqrt{-25} \\
& \text { 2-5i } 3+5 \sqrt{2 i} \frac{25}{5} \frac{4}{2}-\frac{\sqrt{-12}<_{3}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left(4-\frac{3 i}{5 i}\right)+(-2)+\frac{5 i}{\frac{5 i}{4 i}}\right)=2+2 i \\
& (4+\sqrt{-25})+(-6-\sqrt{-\sqrt{-16}})=-2+i \\
& (-3+7 i)+(-5+4 i)=-8+11 i
\end{aligned}
$$

$$
\begin{aligned}
& 4 i(3-6 i) \\
& 12 i-24 \pi^{2}(-1) \\
& \frac{12 i+24}{(-2+4 i)(3-i)} \\
& -6+2 i+12 i-4 x^{2}(-1) \\
& -6+14 i+4 \\
& -2+14 i
\end{aligned}
$$

Remember from before:

$\sqrt[n]{a} \sqrt[n]{b}=\sqrt[n]{a b} \quad \sqrt{6} \cdot \sqrt{6}=\sqrt{3 b}$ only works when $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers

This means that

$$
\sqrt{a} \sqrt{b} \neq \sqrt{a b} \text { if } a<0 \text { or } b<0
$$

$$
\begin{aligned}
& \text { Multiply } \\
& \sqrt{-25} \sqrt{-4}=\sqrt{100}= \pm 10 \\
& \mathrm{Si} \cdot 2 i=10 j^{7}(-1)=-10 \\
& \text { CHange to lmaginare) } \\
& (2+\sqrt{-16})(1-\sqrt{-4}) \text { FIRS7!! } \\
& (2+4 i)(1-2 i) \\
& 2-41+4-8 \mu(-1) \\
& 2+8=10
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { You Ty } \\
\sqrt{-9} \sqrt{-36}=18 \dot{y}(-1)=-18 \\
3 i \cdot 6 i
\end{array} \\
& 38+14 i \\
& 8-10 i+24 i-30 . x(-1) \\
& (4+3 i)(4-3 i) \\
& 25 \\
& 16-12 a(x)
\end{aligned}
$$

Complex Conjugate

If $a+b i$ is a complex number, then its conjugate is/ defined as $a-b i$ $3+2 i \quad 4-3 i \quad-16+32 i$
$3-2 i \quad 4+3 i \quad-16-32 i$

$$
\begin{array}{rc}
\bigcirc-17 i & 4 i \\
17 i & -4 i
\end{array}
$$

