4-1 Solving Inequalities

Objective: Students can solve polynomial inequalities.

1. EB
2. zeROS
3. Multiplicity

Recall from last year.
Solve the following inequalities. Graph your solution. State your solution ingetmadinterval notation.

zero mult

5	$\mid S \neg R$	$E B: x^{2}$ 个
-2	$\mid S_{T R}$	$(-\infty,-2] \cup[5, \infty)$

Solving Inequalities for Polynomials

1. Find Boundary Points (zeros)
2. Find Solution Intervals

Make a sign chart to be more efficient and use multiplicity rules and end behavior models.

Key concepts

Determine the x-values that cause the polynomial to be a)zero b) positive c) negative

zero ult
-4 | STR
-7
6

INTR $2 \operatorname{Tan} B$

ER: x^{4}
a) $x=-4,-7,6$
b) $(-\infty,-7)(--9,6)(6, \infty)$
c) $(-7,-4)$

Solve the Polynomial Inequality $\left(x^{3}-4 x^{2}\right)(-x+4) \leq 0$

$$
x^{2}(x-4)=1(x-4)
$$

$$
\begin{array}{ll}
a=x & \left(x^{2}-1\right) \\
b=1 & (x-4) \\
a^{2}-b^{2}
\end{array}
$$

$$
\left.(x+1)^{\prime}(x-1)^{\prime}(x-4)\right)(-\infty, 1] \cup[1,4]
$$

Sign chart

Solve the Polynomial Inequality

Possible: $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$
$-112-19-2()$

Solve the Polynomial Inequality

$$
\begin{aligned}
& {[-2,-1] x^{x^{4}-4 x^{3}-7 x^{2}+22 x+24 \leq 0}} \\
& \text {-1) } 1-\begin{array}{llll}
-4 & -7 & 22 & 24
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& (x+2)(x+1)(x-4)(x-3) \\
& \begin{array}{c|c}
z & M \\
\hline-2 & 1 s_{1} \\
-1 & 1 s_{1} \\
4 & 1 s_{1} \\
3 & 1 s_{1}
\end{array}
\end{aligned}
$$

Check for understanding:

1. Find where the polynomial is zero, positive, or negative

$$
f(x)=(x+3)(x+1)^{2}(x-4)^{2}
$$

