3-3 Geometric Sequences

Objectives:

-I can write the recursive and explicit form for a table, pattern, and situation

- I can see and understand geometric growth

Vocabulary sequence that Geometric: Multiplies

First Term:

$$
\begin{aligned}
& \text { Therm: } \\
& \text { Is Rm }
\end{aligned} \quad a_{1}=f
$$

Common Ratio:
What I multiply by
Explicit Function:

$$
a_{n}=f \cdot r^{n-1}
$$

Recursive Function:

$$
\begin{aligned}
& m_{n}=a_{n-1} \cdot r \\
& a_{1}=f
\end{aligned}
$$

Notation

$$
\begin{gathered}
a_{\mathrm{n}:} \text { TerM looking } \\
\text { for }
\end{gathered}
$$

$\mathrm{a}_{\mathrm{n}-1}:$

$$
a_{n+1}:
$$

previous
next terM
$6 / 318,54, \ldots$
State the next 3 terms: $162,486,1458$
Arithmetic o Geometric?
First Term:

Recursive: $a_{n}=a_{n-1} \cdot 3$

$$
a_{1}=b
$$

Explicit:

$$
a_{n}=6 \cdot z^{n-1}
$$

$81,27,9, \ldots$
$\cdot 1 / 3$
Predict the next 3 terms: $3,1,1 / 3,1 / 9$
Arithmetic or eometric
First Term: 81
Common Ratio 1/3
Recursive: $a_{n}=a_{n-1} \cdot \frac{1}{3}$
Explicit:

$$
a_{n}=81 \cdot \frac{1}{3} n-1
$$

Write an explicit equation for each recursive formula

Allowance Task:
It's getting close to your $16^{\text {th }}$ birthday and you have been trying to save some money so you can buy a car. As of now, your efforts have not brought in very much cash. You have been mowing lawns and also collecting an allowance from doing chores around the house. The car you want is $\$ 3,000$. You have two different plans to try to get a new car in the next month:
Plan 1) Ask your parents to give you $\$ 100$ dollars every day you do chores
Plan 2) Ask your parents for a new allowance where you will do the dishes every night for $1 \$$ on the first night, $2 \$$ on the second night, 4Φ on the third night, and so on for a whole month.
A) Which plan do you think your parents will agree to?
B) Write an equation for the first plan. How much money will you earn after 30 days?
C) Write an equation for the second plan. How much money will you earn after 30 days?
\square

