3-2 Graphing Polynomial Functions (Book 5.4 pg. 293-306)

Objectives:

- I can graph a polynomial function by hand and using technology
- I can find end behavior of a polynomial function
- I can identify zeros, x-intercepts, and factors of a polynomial function
- I can determine the multiplicity of a polynomial function

End Behavior

Using a graphing calculator find the end behavior of the following functions. Where do the ends go?

Function	Domain	Range	End Behavior
$f(x)=x^{2}$ $f(x)=x^{4}$	$(-\infty, \infty)$	[0,	$\left\{\begin{array}{l} \text { As } x \rightarrow+\infty, f(x) \rightarrow \infty . \\ \text { As } x \rightarrow-\infty, f(x) \rightarrow \infty . \\ \text { As } x \rightarrow+\infty, f(x) \rightarrow \square . \\ \text { As } x \rightarrow-\infty, f(x) \rightarrow \square . \end{array}\right.$
$f(x)=x^{6}$			$\begin{aligned} & \text { As } x \rightarrow+\infty, f(x) \rightarrow \\ & \text { As } x \rightarrow-\infty, f(x) \rightarrow \end{aligned}$

Does it change if I have a negative coefficient? How?

End Behavior

Using a graphing calculator find the end behavior of the following functions. Where do the ends go?

Does it change if I have a negative coefficient? How?

Zeros, x-intercepts, and factors

Find the factors of $f(x)=x^{2}+4 x+3$

$$
(x+1)(x+3)
$$

Now find the x-intercepts of $f(x)=x^{2}+4 x+3$

$$
(-1,0) \text { and }(-3,0)
$$

Lastly find the zeros of $f(x)=x^{2}+4 x+3$

$$
x=-1,-3
$$

What is the same between the factors, x-intercepts, and zeros of this function?

Multiplicity

The power of the factor determines the nature of the intersection at the point $x=a$.
(This is referred to as the multiplicity.)
Straight intersection: Multiplicity $\frac{1}{1}$ $(x-a)^{1} \quad$ The power of the zero is 1 .

Tangent intersection: Bounce $(x-a)^{\text {even }}$ The power of the zero is even.

Inflection intersection: (like slide through) $(x-a)^{\text {odd }}$ The power of the zero is odd. Tangent
Bounce $(x-5)^{2,4,6 \ldots}$

$$
\ln f l e c t i O N
$$

$f(x)=x^{\prime}(x+2)^{\prime}(x-3)^{\prime}$

$$
\begin{array}{c|c}
-2 & 1-S_{T R A I G H T} \\
3 & 1-S_{T} \\
0 & \frac{1}{3} S_{T} \\
& \\
\hline
\end{array}
$$

$$
\begin{align*}
& f(x)=-(x-4)(x-1)(x+1)(x+2) \\
& 4+1111
\end{align*}
$$

pg. 305

Write a function in intercept form for the given graphs whose intercepts are integers. Assume the constant factor of a is either 1 or -1 .

