3-2 Graphing Polynomial Functions (Book 5.4 pg. 293-306)

Objectives:

- I can graph a polynomial function by hand and using technology
- I can find end behavior of a polynomial function
- I can identify zeros, x-intercepts, and factors of a polynomial function
- I can determine the multiplicity of a polynomial function

Using a graphing calculator find the end behavior of the following functions. Where do the ends go?

Function	Domain	Range	End Behavior
$f(x) = x^2$			As $x \to +\infty$, $f(x) \to -\infty$.
$f(x) = x^4$			As $x \to -\infty$, $f(x) \to$. As $x \to +\infty$, $f(x) \to$.
$f(x) = x^6$			As $x \to -\infty$, $f(x) \to $. As $x \to +\infty$, $f(x) \to $.
			As $x \to -\infty$, $f(x) \to $

Does it change if I have a negative coefficient? How?

Negative even

End Behavior

ODD FUNCTIONS

Using a graphing calculator find the end behavior of the following functions. Where do the ends go?

Function	Domain	Range	End Behavior
f(x) = x			As $x \to +\infty$, $f(x) \to $
			As $x \to -\infty$, $f(x) \to$
$f(x) = x^3$			As $x \to +\infty$, $f(x) \to $
			As $x \to -\infty$, $f(x) \to $
$f(x) = x^5$			As $x \to +\infty$, $f(x) \to $
			As $x \to -\infty$, $f(x) \to $

Does it change if I have a negative coefficient? How?

Negative ODD

Zeros, x-intercepts, and factors

Find the factors of $f(x) = 4x^2 + 4x + 3$

Now find the x-intercepts of $f(x) = x^2 + 4x + 3$

Lastly find the zeros of $f(x) = x^2 + 4x + 3$

What is the same between the factors, x-intercepts, and zeros of this function?

Multiplicity

The **power** of the factor determines the nature of the intersection at the point x = a. (This is referred to as the multiplicity.)

Straight intersection:

 $(x - a)^1$ The power of the zero is 1.

Tangent intersection: (X - a) The power of the zero is even.

Inflection intersection: (like slide through) $(x - a)^{\text{odd}}$ The power of the zero is odd.

Straight (X-S) $(x - a)^{\text{odd}}$ The power of the zero is odd. $(x - a)^{\text{odd}}$ The power of the zero is odd. $(x - a)^{\text{odd}}$ The power of the zero is odd. $(x - a)^{\text{odd}}$ The power of the zero is odd. $(x - a)^{\text{odd}}$ The power of the zero is odd. $(x - a)^{\text{odd}}$ The power of the zero is odd. $(x - a)^{\text{odd}}$ The power of the zero is odd.

(A) Use a graphing calculator to graph the cubic functions $f(x) = x^3$, $f(x) = x^2(x-2)$, and f(x) = x(x-2)(x+2). Then use the graph of each function to answer the questions in the table.

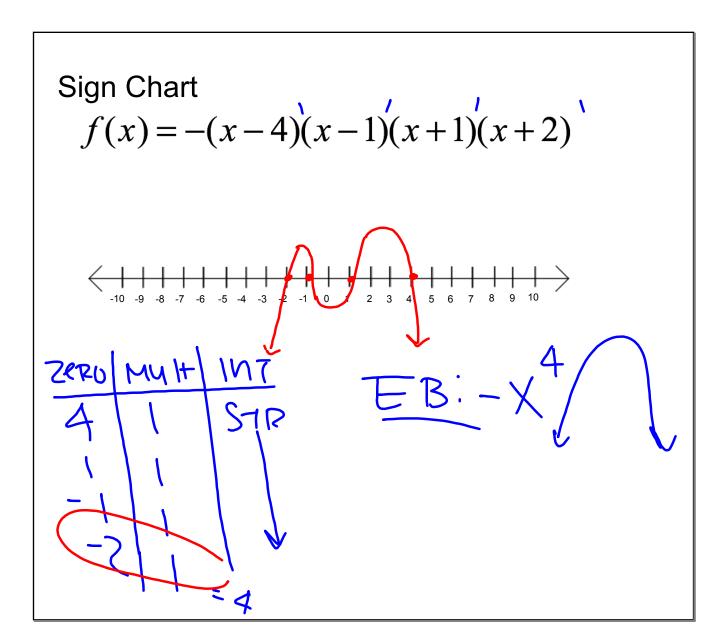
Function	$f(x)=x^3$	$f(x)=x^2(x-2)$	f(x) = x(x-2)(x+2)
How many distinct factors does $f(x)$ have?			
What are the graph's x-intercepts?			
Is the graph tangent to the x-axis or does it cross the x-axis at each x-intercept?			
How many turning points does the graph have?			
How many global maximum values? How many local?			
How many global minimum values? How many local?			

Sign Chart
$$f(x) = x(x+2)(x-3)^{\frac{1}{2}}$$

$$(x+0)^{\frac{1}{2}}$$

$$= x(x+2)(x-3)^{\frac{1}{2}}$$

$$= x(x+2)(x+2)^{\frac{1}{2}}$$


$$= x(x+2)(x+2)^{\frac{1}{2}}$$

$$= x(x+2)(x+2)^{\frac{1}{2}}$$

$$= x(x+2)(x+2)^{\frac{1}{2}}$$

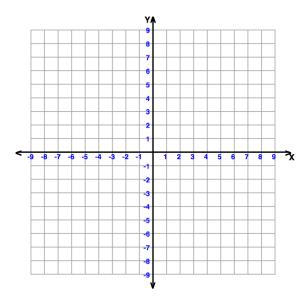
$$= x(x+2)(x+2)^{\frac{1}{2}}$$

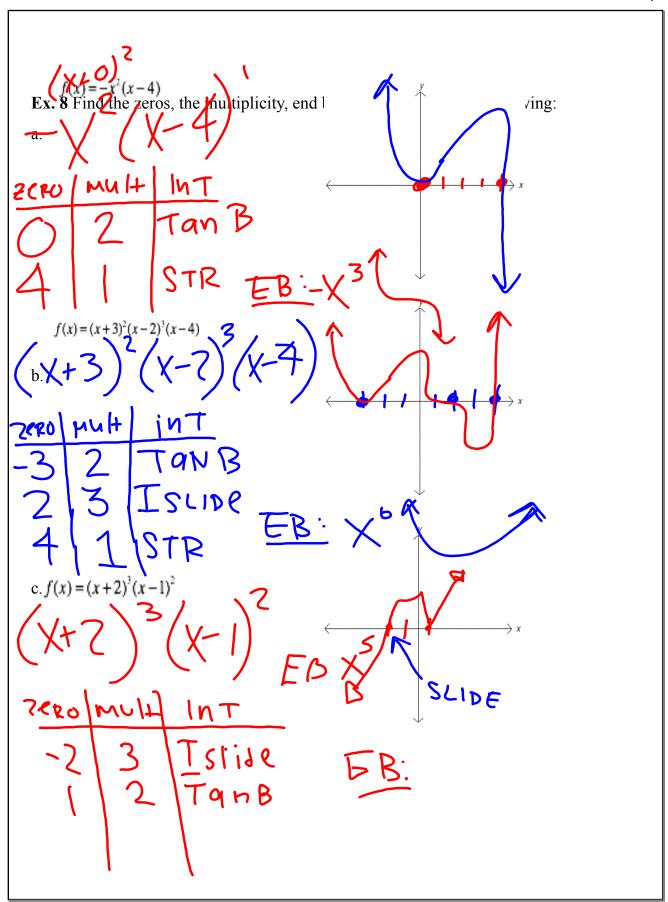
$$= x(x+2)$$

pg. 298

Graphing a Polynomial from factors

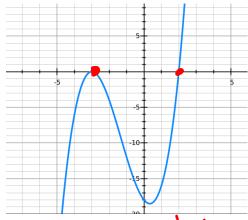
B
$$f(x) = -(x-4)(x-1)(x+1)(x+2)$$

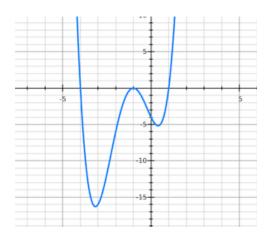

Identify the end behavior.


As
$$x \to +\infty$$
, $f(x) \to$

$$As x \to -\infty$$
, $f(x) \to$

Identify the graph's x-intercepts, and then use the sign of f(x) on intervals determined by the x-intercepts to find where the graph is above the x-axis and where it's below the x-axis.


The x-intercepts are x =, x =, x =, x =



pg. 305

Write a function in intercept form for the given graphs whose intercepts are integers. Assume the constant factor of a is either 1 or -1.

Zero Mult Int -3 2 Tank Z Z Z STR EB: X3 D/M

 $f(X) = (X+3)^2(X-2)^2$

Graphing Polynomials Task
Graphing Polynomials Task

