3-2 Arithmetic Sequences

Objectives
I can identify an arithmetic sequence.
I can write an arithmetic sequence as an explicit and recursive equation

Vocabulary - Common Difference, Term, initial value, explicit, recursive, arithmetic

Vocabulary
Arithmetic: \int equence that $A P R S$ OR $S U B T R A C T$
Common Difference: What I add or Subtract $d=$ common diffence
First term:

$$
a_{1}=f \quad \begin{gathered}
\text { list turpin } \\
\text { sequence }
\end{gathered}
$$

Explicit Equation: $a_{n}=d(n-1) \pm f$
Recursive Equation:

$$
\begin{aligned}
& a_{n}=a_{n-1} \pm d \\
& a_{1}=f
\end{aligned}
$$

Notation

$11,9,7,5,3, \ldots$
State the next 3 numbers: $1,-1,-3$
Common Difference: $a=-2$
First Term: ||
Explicit Equation: $a_{n}=-2(n-1)+11$
Recursive Equation: $a_{n}=a_{n-1}-2$

$$
a_{1}=11
$$

$-5,-3,-1,1, \ldots$.
State the next 3 numbers: $3,5,7$ Common Difference: 2
First Term: - 5
Explicit Equation: $a_{n}=2(n-1)-5$
Recursive Equation: $a_{n}=a_{n-1}+2$
$a_{1}=-S$

$11,8,5,2 \ldots$

State the next 3 numbers: $-1,-4,-7$
Common Difference: - 3
First Term: \|
Explicit Equation: $a_{n}=-3(n-1)+11$
Recursive Equation:

$$
\begin{aligned}
& a_{n}=a_{n-1}-3 \\
& a_{1}=11
\end{aligned}
$$

Write an explicit formula for the given recursive formula

$$
\begin{aligned}
& \left.\begin{array}{l}
a_{n}=a_{n+1}+5.1 .1 \\
a_{n}=a_{n-1}+d \\
d
\end{array}\right) \quad \begin{array}{l}
a_{1}=a_{1} \\
a_{1}=f_{f}
\end{array} \\
& d=5.1 \\
& f=7.5 \quad a_{n}=d(n-1) \pm f \\
& a_{n}=5.1(n-1)+7.5
\end{aligned}
$$

Write a recursive formula for the given explicit formula
$a_{n}-a_{n}-8+(-3)(n)(n-1)$

$$
\begin{array}{ll}
f=9 & a_{n}=a_{n-1}-3 \\
a=-3 & a_{1}=9
\end{array}
$$

Scott has decided to add push-ups to his daily exercise routine. The bar graphs below shop his recorded push-ups each day.

How many push-ups will he do on day 10 ?

$$
\begin{aligned}
& a_{n}=2(n-1)+3 \\
& a_{10}=2(10-1)+3=2(9)+3=18+3= \\
& \text { Write an explicit and recursive equation for the } \\
& \text { number of push-ups Scott does }
\end{aligned}
$$

\square

