### 3.1 Zeros of a Polynomial

Objectives:

- I can find the zeroes of a polynomial by using the factor theorem, remainder theorem, and rational roots theorem
- I know the difference between a zero \& a factor

Divide the following polynomials

$$
\begin{aligned}
& \begin{array}{l}
x+43 x^{2}+7 x-20 \\
x+7=0 x^{2}=-4
\end{array} \\
& \text {-4 } 37-20 \\
& \begin{array}{lllllll}
1-12 & 20 & 3 & 2 & -5 & 7 & -3 \\
\hline & 6 & 1 & 30 & 81 \\
3 x-5 & 0 & \frac{1}{3} 1 x^{2} 10 \times 27 & 82
\end{array}
\end{aligned}
$$

Factors: $(x+4)(3 x-5)$ NOT a factor ZeROS: $x=-4,5 / 3$

$$
\begin{aligned}
& 3 x-5=0 \\
& \frac{3 x}{3}=\frac{5}{3} \quad x=5 / 3
\end{aligned}
$$

Identify the zeros of the following and explain what that means graphically.

$$
12
$$

factor form ${ }^{-1} f(x)=(x+2)(x-1)(x+3)$ 100 ks like
Factor: DIUIDES EVENLY INTO POCV.) ( $X \geq$ IT)
ZRRD: WHAT Makes a factor $=0$, looks W he WHERE 开
zeRos: $x=-2,1,-3$ WHERE $\times$ I $\times 15$
Write the function in standard form and state the relationship between the degree andzeros of the function

$$
\begin{aligned}
S F: f(x)= & (x+2)(x-1)(x+3) \\
& x^{2}-1 x+2 x-2 \\
& \left(x^{2}+x-2\right)(x+3) \\
& f(x)= \\
S F: & x^{3}+3 x^{2}+x^{2}+3 x-2 x-6 \\
& \text { Degree }=x^{3}+4 x^{2}+x-6
\end{aligned}
$$


pg. 371 Determine whether the given binomial is a factor of the polynomial $p(x)$. If so, find the remaining factors of $p(x)$.
(B) $p(x)=x^{4}-4 x^{3}-6 x^{2}+4 x+5 ;(x+1)$
$\begin{array}{r}1 \\ \begin{array}{lllll}1 & -4 & -6 & +4 & +5 \\ \downarrow & -1 & 5 & 1 & -5\end{array} \\ \hline 1\end{array}$
yes, $(x+1)$ is a factor

pg. 371
Example 3 Determine whether the given binomial is a factor of the polynomial $p(x)$. If so, find the remaining factors of $p(x)$.
(A) $p(x)=x^{3}+3 x^{2}-4 x-12 ;(x+3)$

pg. 372
Your Turn
Determine whether the given binomial is a factor of the polynomial $p(x)$. If it is, find the remaining factors of $p(x)$.
8. $p(x)=2 x^{4}+8 x^{3}+2 x+8 ;(x+4)$


$$
\frac{4}{2 x^{3} 0 x^{2} 0 x} 20
$$

$\begin{array}{ll}20 \times 20 & 2(x+4)\left(x^{3}+1\right) \\ 2(x+4)(x+1)\left(x^{2}+x+1\right)\end{array}$
9. $p(x)=3 x^{3}-2 x+5 ;(x-1)$
$\begin{array}{ccccc}1 & 3 & 0 & -2 & 5 \\ \downarrow & 3 & 3 & 1 \\ 3 & 3 & 1 & 16\end{array}$ Not a factor

## Rational Root Theorem:

If all coefficients are integers and the constant is not 0 , then all possible rational roots are:

$$
\begin{aligned}
& x= \pm \frac{\text { factors of constant }}{\text { factors of leading coefficient }} \\
& \text { Iss coefficient in } \\
& S \text { sTandard form }
\end{aligned}
$$

Find the rational zeros of the polynomial function; then write the function as a product of factors.

$$
\text { FaCTors of constant } \frac{ \pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20}{ \pm 1}
$$

$$
\text { POSABLE: } \pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20
$$

Find the rational zeros of the polynomial function; then write the function as a product of factors.

$$
f(x)=x^{4}-4 x^{3}-7 x^{2}+22 x+24
$$

PISSIBC $( \pm, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$

$$
\begin{aligned}
& \begin{array}{lllllll} 
& -1 \mid & 1 & -4 & -7 & 22 & 24 \\
\text { eros: } & & \downarrow & -1 & 5 & 2 & -24 \\
\hline x=-1,-2,3,4 & -2 & & 1 x^{3}-5 x^{2} & -2 x & 24 & 0 \\
\hline
\end{array} \\
& \begin{array}{llll}
\text { factors: } \\
(x-3)(x-4)(x+1)(x+2) & \frac{1}{14}-2 \quad 14 & -24 \\
1 x^{2}-7 x+12 \quad 0
\end{array} \\
& (x-3)(x-4)
\end{aligned}
$$

Find all the zeros

$$
f(x)=x^{3}-2 x^{2}-8 x
$$

$$
\begin{aligned}
& x\left(x^{2}-2 x-8\right) \frac{-8}{-4 / 2} \\
& x(x-4)(x+2)^{-4}
\end{aligned}
$$

zeROS: $x=0,4,-2$

$$
\begin{aligned}
& x=0 \\
& 0=0
\end{aligned}
$$

Find all the zeros of: $2 x^{4}-7 x^{3}-8 x^{2}+14 x+8$


Find all the zeros of: $f(x)=x^{3}+x^{2}-14 x+6$

$$
\begin{aligned}
& 31 \quad 1-14 \quad 6 \\
& \prod_{\substack{a=1 \\
b=4}}^{\substack{ \\
b=-2 \\
1 x^{2}-4 x \\
\hline}} \\
& \begin{array}{ll}
b=4 \\
b=-2
\end{array} \quad\left(x^{2}+4 x-2\right) \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=-\frac{4 \pm \sqrt{16-4(1)(-2)}}{2(1)} \\
& =\frac{-4 \pm \sqrt{16+8}}{2}=\frac{-4 \pm \sqrt{24}}{2}=2 \pm \frac{ \pm \sqrt{24}}{2} \\
& \text { zeros: } x=3,-2+\frac{\sqrt{24}}{2},-2-\frac{\sqrt{24}}{2}
\end{aligned}
$$

Find the polynomial function with a leading coefficient of 2 that has the given degree and zeros: degree 3 , zeros $-2,4,1$
$\square$

