3-1 Arithmetic and Geometric Growth

Objectives:

I can determine the difference between an arithmetic and geometric sequence.
I can find a common difference or common factor from a sequence.
I can write the explicit and recursive equation for a sequence.

Notation

$$
\begin{aligned}
& a_{n} \text { :TerM Trying n:TRM \# } \\
& \text { TO FIND } \\
& \begin{array}{l}
\left.a_{n-1}: \begin{array}{l}
\text { Previous } \\
\text { TeRm }
\end{array} \quad a_{n+1}: \begin{array}{l}
\text { Next } \\
\text { TeRM }
\end{array}\right)
\end{array} \\
& \ldots a_{n-1}, a_{n}, a_{n+1}, a_{n+2} \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
2,2-2 \\
11,9,7,5, \ldots \\
\text { Next } 3 \text { terms: } 3,1,-1
\end{array}
\end{aligned}
$$

Arithmetic Geometric?

Common Difference/Ratio:

$$
a=-2 \quad f=11
$$

Recursive: $a_{n}=a_{n-1}-2 ; a_{1}=11$
Explicit!

$$
\bar{a}_{n}=-2(n-1)+11
$$

$$
\begin{gathered}
\times 2 \times 2 \\
2,4,8,16, \ldots
\end{gathered}
$$

$$
\text { Next } 3 \text { terms } 324,128
$$

Arithmetic or Geometric:

Common Difference Ratio:
$r=2 \quad f=2$

$$
\begin{aligned}
& \text { R: } \begin{aligned}
a_{n} & =a_{n-1} \cdot 2 \quad a_{1}=2 \\
E: a_{n} & =2 \cdot 2^{n-1} \\
a_{s} & =2 \cdot 2^{5-1} \\
& =2 \cdot 2^{4} \\
& =32
\end{aligned}
\end{aligned}
$$

In the following figure, each triangle is created by 3 toothpicks

Figure 1

Figure 2

Recursive:

$$
a_{n}=a_{n-1}+2 ; a_{1}=3
$$

You've saved up over $\$ 100$ to buy you new iPhone. You borrow $\$ 470$ from your parents to pay the rest. If you pay them back $\$ 20$ a week, starting withtbernaweek, how many weeks will it be until you owe them $\$ 350$?

$$
\begin{array}{rl}
470, & 450, \\
2 & 430 \\
1 & \\
d=-20 & a_{n}=-20(n-1)+470 \\
f=470 & 350=-20(n-1)+470 \\
7 \text { weeks } & 350 \\
350 & =-20 n+20+470 \\
-490 & =-20 n+490 \\
-\frac{140}{-70} & =\frac{-20 n}{-20} \\
7 & =n
\end{array}
$$

\square

