2-3 Factoring Polynomials

(Book 6.4 pg. 353-)
Objectives:

- I can factor a polynomial by GCF, special
factoring, and factor by grouping
- I can find multiple representations of
factored polynomials

Greatest Common Factors pg. 355-356
(A)
(B) $2 x^{3}-20 x$

$G C F:$ Biggest thing that evenly

Factor.

$$
\begin{aligned}
& 3 x^{3}+7 x^{2}+4 x \quad 4 a^{4} b+8 a^{3} b^{3}-10 a^{2} b^{4} \\
& x\left(3 x^{2}+7 x+4\right) \\
& 2 a^{2} b\left(2 a^{2}+4 a b^{2}-5 b^{3}\right)
\end{aligned}
$$

Special Factoring Patterns pg. 355

Remember the factoring patterns you already know:
Difference of two squares: $a^{2}-b^{2}=(a-b)(a+b)$
Perfect square trinomials: $a^{2}+2 a b+b^{2}=(a+b)^{2}$

$$
a^{2}-2 a b+b^{2}=(a-b)^{2}
$$

There are two other factoring patterns that will prove useful:
Sum of two cubes: $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
Difference of two cubes:

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

H's with Square ROOTS
OR CUBe RoOTS

- 2 TERMS

Factor.

$$
\begin{aligned}
& 27 x^{3}+64 \quad b=4 \\
& x^{3}-27 \quad a=x \\
& \begin{array}{c}
b=3 \\
(x-3)\left(x^{2}+3 x+9\right)
\end{array} \\
& (3 x+4)\left(9 x^{2}-12 x+16\right) \\
& 8 x^{3}+64 \quad x^{3}+4^{a=x} \quad 4 x^{2}-36 \\
& 9 \\
& \text { NOT Factorable } a=2 x \\
& b=6
\end{aligned}
$$

Factoring by Grouping pg. 357

(A) $x^{3}+x^{2}+x+1$

Write out the polynomial.
Group by common factor.
Factor.
Regroup.
(B) $x^{4}+x^{3}+x+1$
$x^{3}-x^{2}+x-1$
$\left(x^{3}-x^{2}\right)+(x-1)$
$x^{2}(x-1)+1(x-1)$
$\left(x^{2}+1\right)(x-1)$

$$
\begin{aligned}
& \text { Factor by Grouping. }-4 \text { Te\& } \mu \text { 「 } \\
& \left(x^{3}+3 x^{2}\right)(-3 x+9)^{\text {Factor by Grouping. }}\left(x^{3}-3 x^{2}\right)(x-3) \\
& x^{2}(x+3)+3(x+3) \quad x^{2}(x-3)+1(x-3) \\
& (x+3)\left(x^{2}+3\right)\left(x^{2}+1\right)(x-3) \\
& \left(x^{3}+8 x^{2}\right)(+6 x+48) \\
& x^{2}(x+8)+6(x+8) \\
& \left(x^{2}+6\right)(x+8)
\end{aligned}
$$

