2-3 Factoring Polynomials

(Book 6.4 pg. 353-)

Objectives:

I can factor a polynomial by GCF, special factoring, and factor by grouping
I can find multiple representations of factored polynomials

10 Factor the following: $2x^2 - 3x - 2$ $\int x^2 - 7x + 10$ $6x^2 - 7x - 5$ -2xf 5x +10 $(6x^2 - 10)$ x (x-z)-9(x-2) (x-5)(x-2) ·2#'s multiply to be ·2#'s add to be b $x^{2} + x - 30$

Factor. $3x^{3} + 7x^{2} + 4x$ $\chi (3\chi^{2} + 7\chi + 4)$ $4a^4b + 8a^3b^3 - 10a^2b^4$ $\lambda a b (\lambda a + 4ab - 5b)$

Special Factoring Patterns pg. 355

Remember the factoring patterns you already know:

Difference of two squares: $a^2 - b^2 = (a - b)(a + b)$ Perfect square trinomials: $a^2 + 2ab + b^2 = (a + b)^2$ $a^2 - 2ab + b^2 = (a - b)^2$

There are two other factoring patterns that will prove useful:

Sum of two cubes: $a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$ Difference of two cubes: $\underline{a^{3} - b^{3}} = (a-b)(a^{2} + ab + b^{2})$ H 'S with SQUARE ROOTS OR CUBE ROOTS ZTERMS

Factor. $x^{3}-27 \quad \begin{array}{c} \mathcal{A} = X \\ \mathcal{D} = \mathcal{J} \\ \mathcal{D} = \mathcal{J} \\ (X-3)(X^{2}+3X+9) \\ (3x+4)(9x^{2}-12x+16) \end{array}$ $x^3 + 4^{4x^2} - 36$ $8x^3 + 64$ NOT F9(TORABLE 9= 2x b=6

Factoring by Grouping pg. 357	
(A) $x^3 + x^2 + x + 1$	
Write out the polynomial.	$x^{3} - x^{2} + x - 1$
Group by common factor.	$(x^3 - x^2) + (x - 1)$
Factor.	$x^{2}(x-1) + 1(x-1)$
Regroup.	$(x^2 + 1)(x - 1)$
(B) $x^4 + x^3 + x + 1$	

Factor by Grouping. -4 + 24 ($x^3 + 3x^2 + 3x + 24$) ($x^3 - 3x^2 + x - 3$) $3)+3(x+3) \chi^{2}(x-3)+1(x-3)$ $(x+3)(x^{2}+3)(x^{2}+1)(x-3)$ 8x2/+6x+48)+6 (X+8) 2(x+8) $(\chi^2 + G)(\chi + g)$

