2-1 Operations with Polynomials

Objectives:

- I can identify the parts of a polynomial
- I can perform operations with polynomials
including addition, subtraction, and
multiplication

Vocabulary
*)
ONE RM
Binomial
IWO TERMS

Trinomial
THREE TERMS
Polynomial any $\#$ of terms
Like Terms
Same variables 3 Same degree (exponent)

Monomials
Identify the monomials: $x^{3}, \sqrt{y+3 y^{2}-5 y^{3}+10,} a^{2} b c^{12} ; 76$
Monomials: $76, x^{3}, a^{2} b c^{1^{2}}$
Not monomials: $y+3 y^{2}-5 y^{3}-10$

Identify the degree of each monomial.

Degree: all exponents added Degree- degree highest term
Polynomial

Polynomials pg. 315

Identify the coefficient of each term.
\# in front

Term	$1 y$	$3 y^{2}$	$-5 y^{3}$	10
Coefficient	1	3	-5	-

variable
Identify the degree of each term.

Term	y	$3 y^{2}$	$-5 y^{3}$	10
Degree	1	2	3	0

Write the polynomial in standard form- $5 y^{3}+3 y^{2}+y+10$ highest \rightarrow lowest degree -5
What is the leading coefficient of the polynomial? \qquad
Coefficient of term with hignest degree

Adding Polynomials pg. 316

$$
\begin{gathered}
\text { Ex } 1\left(4 x^{2}-x^{3}+2+5 x^{4}\right)+\left(-x+6 x^{2}+3 x^{4}\right) \\
5 x^{4}-x^{3}+4 x^{2}+2 \\
\frac{+3 x^{4}+6 x^{2}-x}{8 x^{4}-x^{3}+10 x^{2}-x+2} \\
\text { Ex } 2\left(10 x-18 x^{3}+6 x^{4}-2\right)+\left(-7 x^{4}+5+x+2 x^{3}\right) \\
11 x-16 x^{3}-x^{4}+Z \\
-x^{4}-16 x^{3}+11 x+3
\end{gathered}
$$

Add the following polynomials pg. 316

$$
\begin{aligned}
& \left(17 x+8 x^{2}-9 x^{4}+4-2 x\right)+\left(14 x-8 x^{4}+12\right) \\
& 17 x^{4}+8 x^{2}-9 x^{3}+4-2 x^{3} \\
& 11 x^{3}-8 x^{2}+12 r \\
& \left(-4 x^{7}+17 x^{4}+8 x^{3}+x\right)+(4 x+1+17) \\
& -8 x+3 x^{11}+x^{6} \\
& 9 x^{4}-x+17 \\
& 3 x^{11}+x^{6}+4 x^{4}-9 x+17
\end{aligned}
$$

Subtracting Polynomials pg. 317
$\left(12 x^{3}-5 x+8 x^{2}+19\right)+\left(6 x^{2}+9 x-3+18 x^{3}\right)$
Write in standard form.
Align like terms and add the opposite. Add.

$12 x^{3}$	$-8 x^{2}$	$+5 x$	+19
$+18 x^{3}$	$-6 x^{2}$	$+9 x$	-3
$30 x^{3}-14 x^{2}+14 x+16$			

$\left(-4 x^{2}+8 x^{3}+19-5 x^{5}\right)-\left(9+2 x^{2}+10 x^{5}\right)$

$$
-15 x^{5}+8 x^{3}-6 x^{2}+10
$$

Subtract the following polynomials pg. 317
$\left(23 x^{7}-9 x^{4}+1\right)+\left(+9 x^{4}+6 x^{2}+31\right)$
$23 x^{7}-6 x^{2}+32$

$$
\begin{gathered}
\left(7 x^{3}+13 x-8 x^{5}+20 x^{2}\right)+\left(+2 x^{5}-9 x^{2}\right) \\
-6 x^{5}+7 x^{3}+11 x^{2}+13 x
\end{gathered}
$$

$$
=(x+3)(x+2) x
$$

Pg. 327

Identify the volxme of:
V_{1}
V_{2}

Pg. 329

$$
\begin{array}{|r}
\begin{array}{l}
-7 x^{2}+x+2 \\
\times \quad 3 x-4 \\
\frac{\left(3 x-7 x^{2}\right)}{28 x^{2}-4 x-8} \\
-2 x^{3}+3 x^{2}+6 x 0 \\
-2 x^{3}+3 x^{2} 2 x-8
\end{array}
\end{array}
$$

Multiply the following polynomials pg. 329

$$
(3+2 x)\left(4-7 x+5 x^{2}\right)
$$

$$
(x-6)\left(3-8 x-4 x^{2}\right)
$$

Multiplying with a table

$$
\left(x^{2}+3 x-5\right)\left(x^{2}-x+1\right)
$$

