12-1 Descriptive Statistics

Objective:
I can describe a distribution by its shape, outliers, center, and spread.

Vocabulary:
 Population: Set of all

Sample: A subset of the population

Parameter: Measures of a population -Use $\mu=$ population mean $\sum_{\text {action }} u \cdot s$.

Statistics: Measures of a sample

1. Symmetry:

2. OUtlierS: Data far away from the rest of the data. Formula to come ...
3. Center Measures of central tendency:
4. Mean - arithmetic average of the data
5. Median - Middle value when placed in order, or average of the two middle values
6. Mode - Most frequently occurring value (s)
7. Standard: Measure of the variability in the data alleviation

Find the mean, median, and mode for the following set of data:

$$
\begin{aligned}
& 12,14,10,1,9,13,17,14,16 \quad 1,9,10,12,13,14,14,16,17 \\
& \bar{X}=11 \cdot 7 \\
& \text { Med }=13 \\
& \text { Mode }=14
\end{aligned}
$$

$$
\begin{aligned}
& \text { 65, 95, 70, 85, 90, 70,20 } \\
& \text { With } 20 \\
& \bar{x}=74 \\
& \text { W/0 } 20 \\
& \bar{x}=78 \\
& \text { <changed by } \\
& M e d=7 S \\
& \text { eq: } 75
\end{aligned}
$$

[^0]
Why do we have all of these measures?

Example: On a cul-de-sac, you have 5 houses built for:
\$200,000, \$200,000, \$200,000, \$200,000, \$1,200,000

Find the median and the mean? Which one is a better measure?

$$
\begin{aligned}
& \text { Mean: } 400,000 \\
& \text { Med: } 200,000
\end{aligned}
$$

Find the standard deviation: Weights in grams of 30 loon chicks

$$
\begin{array}{cccccccccc}
79.5 & 87.5 & 88.5 & 89.2 & 91.6 & 84.5 & 82.1 & 82.3 & 85.1 & 89.8 \\
84.0 & 84.8 & 88.2 & 88.2 & 82.9 & 89.8 & 89.2 & 94.1 & 88.0 & 91.1 \\
91.8 & 87.0 & 87.7 & 88.0 & 85.4 & 94.4 & 91.3 & 86.3 & 85.7 & 86.0
\end{array}
$$

Spread: When we use the median to ifedrife center, we use 5 -Number Summary Q_{1} med Q, Max
Range $=$ maximum - minimum
Quartiles split the data into fourths

min= lowest
IQ
First Quartile $\left(Q_{1}\right)=$ the median of the lower half of the data Second Quartile $=$ the median
Third Quartile $\left(Q_{3}\right)=$ the median of the upper half of the data Max = highest
Interquartile Range (IQR) measures the spread between Q_{1} and Q_{3}

$$
\text { IR }=Q_{3}-Q_{1}
$$

Five number summary $=\left\{\right.$ minimum, Q_{1}, median, Q_{3}, maximum

Find the five number summary for the male and female life expectancies in South American nations and compare. Then draw its boxplot.

A box plot (sometimes called box and whisker plot) is a graph that depicts the five number summary of a data set.
S\# : $\{66.2,76.25,74.5,77.7,79.4\}$
females: $\{66.2,66.7,67.7,72.8,74.3,74.4,74.6,76.5,76.6,78.8,79.0,79.4\}$
males: $\{59.0,60.5,61.5,66.7,67.9,68.5,69.0,70.3,71.4,71.9,72.1, \not \approx 2.6\}$
S\#: $\{59,64.1,68.75,71.65,72.6\}$

Box and Whisker plots allow us to get a good visual of outliers: a number that makes one of the whiskers noticeably longer than the box:

RULE OF THUMB: a number is considered an outlier if it is more than $\underbrace{\text { 1.5 } \times \text { IQR below } Q_{1} \text { or above } Q_{3}}$ 1. Find IQR
2. Multiply by 1.5 3. Add to Q3 4 Subtract from Q1) outlier

Is 61 an outlier in Roger Maris's home run data? Q_{1}
Five number summary $=\{5,11,19.5,30.5,61\}$

1. Find $I G R=30.5-11=19.5$
2. $I_{q R} \times 1 . S=29.25$
3. Add to $30.5+29.25=59.75$
4. Subtract from $11-29.25=-18.25$

61 is an outlier

[^0]: The salaries of the LA Lakers (who makes more than a million a year) for the 2013-2014 season
 Kobe Bryant: $\$ 30,453,805 \quad$ Pau Gasol: $\$ 19,285,850$
 Steve Nash: \$9,300,500 Jordan Hill: \$3,563,600
 Chris Kaman: \$3,183,000 Jodie Weeks: \$1,550,000
 MarShon Brooks: $\$ 1,210,080$ Nick Young: $\$ 1,106,942$
 Jordan Farmar: \$1,106,942 Chris Duhon: \$1,500,000
 Mean:

 $$
 \curvearrowright \$ 7 \text { million }
 $$

 Median:

 $$
 2.3 \mathrm{million}
 $$

 Mode:

 $$
 1,106,942
 $$

