11-4 Triangle Angles

Objectives:
-I can find missing angles of triangles.
-I can use triangle properties to solve for a variable.

Triangle Sum Theorem

All 3 angles in a triangle will always have a sum $\& f 180^{\circ}$
$m \angle A+m \angle B+m \angle C=180^{\circ}$

Find the measure of the numbered angles.

$$
53^{\circ}+90^{\circ}+?=180
$$

$$
\begin{gathered}
42+90+?=180 \\
-42-90 \quad-90 \\
?=42 \\
?=48^{\circ}
\end{gathered}
$$

$$
143+x=180
$$

-143

$$
-143
$$ $x=180$

$$
\begin{gathered}
90+33+x=180 \\
123+x=180 \\
-123 \quad 123
\end{gathered}
$$

Use the Triangle Sum Theorem to find the missing angles.

Isosceles Triangles:

1) If two sides of a triangle are congruent, then the angles opposite them are congruent.
If $\overline{A B} \cong \overline{A C}$, then $\angle B \cong \angle C$.
2) If two angles of a triangle are congruent, then the sides opposite them are congruent.

If $\angle B \cong \angle C$, then $\overline{A B} \cong \overline{A C}$.

Equilateral Triangles:

1) If a triangle is equilateral, then it is equiangular
2) If a triangle is equiangular, then it is equilateral.

If equilateral triangles are equiangular, what is the measure of each angle in an equilateral triangle?

$$
\begin{gathered}
x+x+x=180^{\circ} \\
3 x=180
\end{gathered}
$$

$$
x=60^{\circ}
$$

Find the unknown measure (s).

Find the measure of the missing angles

$$
\begin{array}{cl}
3 x+x+7+90=180 \\
4 x+97=180 & 4 x=83 \\
3 x=x+7 & x=3.5
\end{array}
$$

$$
\begin{array}{r}
2 x=7 \\
x=3.5
\end{array}
$$

Find the measure of all 3 angles

$$
\begin{aligned}
& 3(22)-11 \\
& 3 x^{2} \\
& 55+55+2 y=180 \\
& \begin{array}{r}
110+2 y=180 \\
-110 \quad-110
\end{array} \\
& 2 y=70 \\
& y=35 \\
& x-11=11 \\
& +11+11 \\
& x=22
\end{aligned}
$$

