11-2 Law of Sines

Objectives:

1. I can solve a triangle using the law of sines.
2. Lernidentify 2 possible triangles and solve.
Non-Right TRiangles

Law of Sines

$$
\begin{aligned}
& \hline \text { ASA or AAS } \quad \text { Law of Sines } \\
& \hline \text { SSA } \quad \text { Ambiguous Case } \\
& A B C=\text { angles } \\
& a b c=\text { side lengths }
\end{aligned}
$$

Your Turn
Find all the unknown measures using the given triangle. Round to the nearest tenth.
4.

5.

ambiguous

$\begin{aligned} \frac{8 \cdot \sin 110}{\sin 28} & =a \cdot \frac{\sin 28}{\sin 28} \\ a & =16.01\end{aligned}$

$$
11.40=c
$$

Solve the triangle given:

$$
\begin{aligned}
& \mathrm{A}=76.7^{\circ} \\
& \mathrm{B}=29.3^{\circ} \\
& \mathrm{c}=87
\end{aligned}
$$

Find all
 lengths; all angles $\frac{b}{\sin 29.3}=\frac{87}{\sin 74}=\frac{a}{\sin 76.7}$

$$
\begin{array}{rr}
\frac{87 \cdot \sin 29.3}{\sin 74} & \frac{87 \cdot \sin 76.7}{\sin 74} \\
b=44.29 & a=88.08
\end{array}
$$

Given $\mathrm{a}=20, \mathrm{~A}=50^{\circ}, \mathrm{B}=42^{\circ}$ find $c=$

Given: $\mathrm{a}=3, \mathrm{C}=28^{\circ}, \mathrm{A}=40^{\circ}$
find $\mathrm{c}=$

$$
\begin{array}{ll}
c \cdot \frac{\sin 40}{\sin 40} \cdot \frac{3 \cdot \sin 28}{\sin 40} & \frac{3 \cdot \sin 112}{\sin 40}=b \cdot \frac{\sin 40}{\sin 40} \\
C=2.19 & 4.33=b
\end{array}
$$

