1-1 Parent Functions

Objectives:

1. I can graph the parent functions
2. I can analyze the key features of a graph

Domain \& Range

Domain: x-values - input read x's from left to right (smallest to largest)
*some functions have domain restrictions
can't have a neg. \# in a sq. root
to find: set the radicand ≥ 0 and solve for x .

Range: y-values - output read y's from bottom to top (smallest to largest)
x \& y intercepts
y-intercepts: where the graph crosses the y axis and $x=0$
x-intercepts: where the graph crosses the x-axis and $y=0$
intercepts are points on a graph \& should be written as ordered pairs!!! (x,y)

Increasing, Decreasing and Constant

 - Increasing: as you mpo from left to right the yvalues increase- Decreasing: as you move from left to right the y values decrease
- Constant: as you move from left to right the y values do not change

this behavior is reported using interval notation for the X-VALUES where the graph has a certain behavior

Symmetry: Even/Odd/Neither/One to One

Even: If the graph is symmetric to the y-axis, it is an even function

Odd: If the graph is symmetric to the origin, it is an odd function

Neither: If it doesn't fit either odd or even, then it is neither

One to one: If a graph passes both the vertical line test and the horizontal line test it is one-to-one

Continuous: A function is continuous if you can draw it in one motion without picking up your pencil.

Discrete: made of ordered pairs or individual parts

Continuous

Function

Discrete
Function

Asymptotes

A line that a graph approaches but never touches*

*This is true for vertical asymptotes, we will go into more detail for horizontal asymptotes later

Limits

as x approaches \qquad , y approaches \qquad Describe end behaviorlsing limit notation. $f(x)$

this means the right
$\lim _{x \rightarrow \infty} f(x)=1$ $\lim _{x \rightarrow-\infty} f(x)=1$

this means the left end

Label Extrema \& End behavior maximums

- relative (local) higher
- absolute (global) DNE nighest minimums lower
- relative (local) $\begin{gathered}\text {-h } \\ \text { oh an } \\ \text { others }\end{gathered}$
- absolute (global) lowest

